Letter of Transmittal

November 14, 2016

Dr. Aly Said
The Pennsylvania State University
209 Engineering Unit A
University Park, PA 16802
aly.said@engr.psu.edu

Dear Dr. Said,
The attached document contains a detailed analysis of the lateral system for the Brendan Iribe Center for Computer Science and Innovation in College Park, MD.

This report includes a comparison of hand calculations and RAM output for center of rigidity/mass calculations, total shear into each lateral frame, and wind/seismic loads. After validating the computer model, spot checks are performed to determine serviceability.

Thank you for taking time to review this technical report. I look forward to your feedback and discussing where to go from here.

Best Regards,

Brendan Barrett

NOTEBOOK SUBMISSION C

THE BRENDAN IRIBE CENTER FOR COMPUTER SCIENCE AND INNOVATION

COLLEGE PARK, MD

Brendan Barrett
Structural Option
Advisor: Dr. Said

Executive Summary

As one of the world's top computer science institutions, the University of Maryland continues to grow. There is no longer enough room in the existing facilities to keep up with the latest advancements in virtual reality. The Brendan Iribe Center for Computer Science and Innovation will help separate the University of Maryland from its competitors.

Six stories of collaborative classrooms, research labs, seminar rooms, offices, and many common areas will welcome students and faculty alike. A 300-seat auditorium will provide the University of Maryland an opportunity to showcase its latest research such as cybersecurity, computational biology, and quantum computing. The open floor plans will help promote collaborating amongst peers, and ultimately set these students up for successful careers.

Structurally, the Brendan Iribe Center for Computer Science and Innovation utilizes steel wide flange girders and columns to support gravity loads. The curvilinear shape of the building results in unequal bays as infill beams change as the shape of the building changes. Due to the irregular shape, there are several unique components of this system such as curved HSS beams along the southern wall. The 300- seat Antonov Auditorium utilizes wide flange girders and columns, as well as a 90 ' truss to support the different levels and roof.

From a lateral standpoint, the Brendan Iribe Center for Computer Science and Innovation uses ordinary moment frames and vertical trusses throughout each wing of the building and the auditorium. All loads are in accordance with the 2015 International Building Code and ASCE 710.

This report will provide gravity and lateral calculations which will be used for further analysis of the building.

Table of Contents

1. General Information 5
1.1 Site Plan 5
1.2 Documents used in Preparation of Report 6
2. Gravity Loads 7
2.1 Roof Loads 8
2.2 Snow Loads 10
2.3 Floor Loads 12
2.4 Perimeter Loads 13
2.5 Non-Typical Loads 15
3. Wind Loads 16
4. Seismic Loads 21
5. Typical Member Spot Checks for Gravity Loads 25
6. Alternative Framing Systems for Gravity Loads 26
6.1 Alternate Design \#1: Non-Composite Steel Framing 26
6.2 Alternate Design \#2: One-Way Slab with Edge Beam 27
6.3 Alternate Design \#3: Hollow Core Plank on Wide Flanges 28
7. Systems Comparison 29
8. Lateral Analysis 30
8.1 Modeling Information 31
8.2 Model Validation 32
8.2.1 Stiffness Calculation 32
8.2.2 Center of Rigidity Calculation 33
8.2.3 Center of Mass Calculations 34
8.2.4 Total Shear into Frames 36
8.2.5 Wind Load Comparisons 37
8.2.6 Seismic Load Comparisons 38
8.3 Lateral System Checks 38
8.3.1 Lateral Spot Checks 38
8.3.2 Story Drift 39
8.3.3 RAM Member Code Check 40
Appendix A- Wind Load Calculation 41
Appendix B- Cost Estimate 42

1.General Information

1.1 Site Plan

The Brendan Iribe Center for Computer Science and Innovation is located at the eastern part of campus at the intersection of Baltimore Pike and Campus Drive.

Figure 1: Site Plan

1.2 Documents used in Preparation of Report

The following is a list of codes, standards, and other references that were used for calculations throughout this report.

- Brendan Iribe Center for Computer Science and Innovation - Structural Drawings
- International Code Council
- 2015 International Building Code
- American Society of Civil Engineers
- ASCE 7-10: Minimum Design Loads for Buildings and Other Structures

2.Gravity Loads

2.1 Roof Loads

See Appendix A to view bay used in determination of gravity loads
Brenton Barrett Gravity Laos
Roof Loads
Main Tower (Area A + B) Ground Floor to $6^{\text {th }}$ Floor Grovel
Filter Fabric
Presume beard with root black
High Density Rigid Insulation Root Block
protective membrane

$3^{\frac{1}{2}} 2^{\prime \prime} \mathrm{NW}$ concrete on $3^{\prime \prime} 20 \mathrm{GA}$ metal reck

Dead Loads
Gravel $=6$ PSF
Filter Fabre $=$ Negligible
Drainage Guard with root block: 3 PSF
6" High Dasity Rigid Insulation $=0.75$ per $\mathrm{V}_{3}{ }^{\prime \prime}=9 \mathrm{PSF}$
Root Block $=2$ PSF
Protective Mentions $=1$ PSF
Hos resized asphalt membrane system $=1$ PSF
Primer $=1$ PSF
Roof Deck $=65$ PSF

$$
\begin{aligned}
& M / E / C / L=10 \text { PSF } \\
& \text { soil (Green roof) }=40 \text { PSF } \\
& \text { Fran }=84 \operatorname{PLF}\left(40.67^{\prime}\right)+33 \operatorname{PLF}\left(40^{\circ}\right)+68 \operatorname{PLF}\left(39.75^{\prime}\right) \\
& \quad+76 \operatorname{PLF}\left(39.5^{\prime}\right)+84 \operatorname{PLF}\left(39.75^{\prime}\right)+90 \text { PLF }\left(39.75^{\prime}\right) \\
& \quad+99 \operatorname{PLF}\left(38^{\prime}\right)=2112016 / 15865 F=16 \mathrm{PSF} \\
& \text { Total Decd }=154 \mathrm{PSF} \\
& \text { Live Load) } \\
& L_{R}=30 \text { PSF } \quad * \text { Minimum } L_{R} \text { is } 20 \text { PSF }
\end{aligned}
$$

2.2 Snow Loads

Drift at rooftop garden:

- Leeward drift $\rightarrow \ell_{v}=265^{\circ}$

$$
\begin{aligned}
& h_{d}=0.43 \sqrt[3]{\ell_{v}} \sqrt[4]{p_{g}+10}-1.5 \\
& =0.43 \sqrt[3]{265} \sqrt[4]{35+10}-1.5 \\
& =5.66 \mathrm{ft} \\
& \gamma=0.13 \mathrm{pg}+14 \\
& =0.13(35)+14 \\
& =18.6 \mathrm{pit} \\
& h_{b}=24.26 \mathrm{psf} / 18.6 \quad \alpha f=1.3^{\prime} \Rightarrow \text { flat root height } \\
& h_{c}=10^{\circ}-1.3^{\prime}=8.7^{1} \quad \frac{h_{c}}{h_{0}}=\frac{8.7}{1.3}=6.7>02 \therefore \text { adrift } \\
& h_{d}<h_{c} \rightarrow w=4 h_{d}=4(5.66)=22.64^{\prime} \\
& p d^{\prime}=\text { ho } \gamma \\
& =5.66(18.6) \\
& =105.3 \mathrm{PSF}
\end{aligned}
$$

	Bradon Barrett Gravity Lowor
3	Drist from tower onto quoitoriom: Leeward drift $\rightarrow l v=58^{\circ}$ $\begin{aligned} & h_{0}=0.43 \sqrt[3]{58} \sqrt[4]{35+10}-1.5 \\ &=2.81 \mathrm{ft} . \\ & \gamma=18.6 \mathrm{pcf} \\ & h_{b}=1.3^{\circ} \\ & h_{c}=68^{\prime}-1.3^{\prime}=66.7^{\prime} \\ & h_{d}<h_{c} \rightarrow \omega=4 h_{d}=4(2.81)=11.24^{\prime} \\ & p_{d}=h_{\partial} \gamma \\ &=(2.81)(18.6) \\ &=52.3 \mathrm{PSF} \\ & 24.26 \mathrm{PFF} \\ & 58^{\prime} \end{aligned}$

2.3 Floor Loads

2.4 Perimeter Loads

2.5 Non-Typical Loads

3. Wind Loads

See Appendix B for determination of wind load direction

Branden Boverett Wind hoods
Step 4: Velocity Pressure Exposure (officiant (Table 27.3-1)

$$
k_{2} \text { at } h=118.67^{\circ}
$$

Height Exposure B K_{2}

$$
\begin{array}{lc}
100 & 0.99 \\
118.67 & 1.037 \\
120 & 1.04
\end{array}
$$

Step 5: Velocity Pressure (Eau 27.3-1)

Story	Height z (ft)	Story Height (ft)	Kz	Md	Kzt	qz (psf)
Ground	0	25.5	0.57	0.85	1	17.9
1	25.5	14.67	0.664	0.85	1	20.8
2	40.17	14.67	0.76085	0.85	1	23.8
3	54.84	14.67	0.82936	0.85	1	$\mathbf{2 6 . 0}$
4	69.51	14.67	0.88804	0.85	1	27.8
5	84.18	14.67	0.94254	0.85	1	29.5
Penthouse	98.85	19.83	0.98655	0.85	1	30.9
Roof	118.67		1.036675	0.85	1	32.5

Step 6: External Pressure Coefficient
wall Pressure Cofficion's:

$$
\begin{aligned}
& C_{\rho} \text { winwart }=0.8 \\
& L / B=245 / 380=0.65>0 \rightarrow \text { Cplecwerd }=-0.5 \\
& L_{1} \rightarrow \\
& C_{p r i d e w a l l}=-0.7
\end{aligned}
$$

Broom Barest Wind hoods
Roof Pressure coefficients

$$
h / L=0.48
$$

$$
0 \text { to } h / 2 \rightarrow 0-59.3^{1} \rightarrow c_{p}=-0.9
$$

$$
h / 2 \text { to } h \rightarrow 59.3^{\prime}-118.67^{\prime} \rightarrow c p=-0.9
$$

h to $2 h \rightarrow 118.67^{\circ}-237.34^{\prime} \rightarrow C_{p}=-0.5$ $>2 n \rightarrow 23734^{\circ} \rightarrow C_{p}=-0.3$

Step 7: Wind Pressure
Noil- South Direction $L=245^{\circ} \quad B=380^{\circ}$

$$
p=q_{2} G_{f} C_{p}
$$

East-west Direction $L=380^{\circ} \quad B=245^{\circ}$

* some calculations as N^{-5} directer expat $G_{f}=0.88$

4. Seismic Loads

Brenton Barrett Seismic Louis
Seismic Load r
Structure Non-exempt (Section 111.2) Site Class D
(sheet 5-001)

$$
\left.\begin{array}{lll}
S_{S}=0.119 \mathrm{~g} & S_{M S}=0.190 \mathrm{~g} & S_{D S}=0.127 \mathrm{~g} \\
S_{1}=0.051 \mathrm{~g} & S_{M_{1}}=0.122 \mathrm{~g} & S_{D 1}=0.081 \mathrm{~g}
\end{array}\right\} \text { USGS }
$$

Seismic Design category B (Section 11.6) Equivalent Lateral Face Analysis Permitted (section 12.6) Ordinary Braced Frame $\rightarrow R=3 \quad(B-12) \quad$ Frame $\rightarrow R=31 / 2(C-4)\}$ table $12.2-1$ Ordinary moat Frame $\rightarrow R=31 / 2(C-4)$
\therefore use smaller R Valve $\rightarrow R=3$

$$
\begin{aligned}
& \Omega_{0}=2 \\
& C_{d}=3
\end{aligned}
$$

Seismic Importance Factor $=1.25$ (Table 1.5-2) Risk category III

Fundanatal Period

$$
T_{a}=c_{1} h_{n}{ }^{x}
$$

where $c_{+}=0.02$

$$
\begin{aligned}
& x=0.75 \\
& h_{n}=139^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
& T_{a}=0.02(139)^{0.75}=0.815 \\
& T_{L}=8 \mathrm{sec} \quad(\text { Figure 22-12) }
\end{aligned}
$$

5.Typical Member Spot Checks for Gravity Loads

The following section analyzes the existing gravity system of the Brendan Iribe Center for Computer Science and Innovation. The existing system is composite steel framing with $31 / 4$ " lightweight concrete on 3 " 20 gage metal deck. The bay that was chosen to be analyzed is highlighted in Figure 2 below and was selected as it represents a fairly standard size bay throughout the building. The columns circled below represent the interior and exterior columns that are analyzed. Note that the Dead Load for a typical floor from Notebook Submission A has been reduced from 73 PSF to 68 PSF as the framing allowance was reduced from 15 PSF to 10 PSF.

Figure 2: Bay used in analysis

Broom Barrett Existing Framing
Composite Steel Framing

Floor System: $3^{\prime \prime} 4^{\prime \prime}$ LW concrete on $3^{\prime \prime} 20$ GA composite metal $\operatorname{deck}\left(6^{1 / 4 " t o t a l)}\right.$

Loving = Dead = 68 PSF
Live $=100$ PS

Metal Deck Check
3VLI 20 with $3^{\text {ry" LW e }}$
3 spar unshared clear span $=13^{\prime}-3^{\prime \prime}>10^{\prime} \therefore$ ok superimposed live 10400100 PSF
supermpserev LL @ 10^{\prime} clear span = 149 PSF >100 PSF

$$
\therefore O K
$$

Brendan Buret Existing Framing
W 12×19 (16) Infill Bean Cheek
Live Load Reduction:

$$
\begin{aligned}
& K_{L L} A_{T}=\left(10^{1}+10^{\prime}\right)\left(21^{\prime}\right)=420 \mathrm{ft}^{2}>400 \mathrm{ft}^{2} \\
& \begin{array}{l|l}
L_{0}=100 \times & 0.5 \\
\max & 0.25+\frac{15}{\sqrt{420}}=0.982=98.2 \text { PSF }
\end{array} \\
& W_{v}=\left\lvert\, \begin{array}{l}
1.4(68)=95.2 \mathrm{PSF} \\
1.2(68)+1.6(98.2)=238.7 \mathrm{PSF}
\end{array}\right. \\
& W_{0}=238.7 \operatorname{PSF}\left(10^{\circ}\right)=2387 \operatorname{PLF} \\
& M u_{u}=2387(21)^{2} / 8=131.6^{1 \mathrm{~K}}
\end{aligned}
$$

Check composite strength

$$
\text { Def }=\left\lvert\, \begin{aligned}
& 21(12) / 4=63=\text { contras } \\
& 10(12)=120
\end{aligned}\right.
$$

Check shear stud capacity

$$
n=16 \quad \sum \quad Q_{n}=\frac{16}{2} \times 17.2=137.6 \mathrm{k}
$$

From table 3-21

$$
\text { Deck } \perp
$$

weak studs position

$$
\begin{aligned}
& \text { As } F_{y}=\left(5.57 \mathrm{in}^{2}\right)(50 \mathrm{ksi})=278.5 \mathrm{k} \\
& 0.85 \mathrm{f}^{\prime}\left(\text { Def } t=0.85(3.5 \mathrm{ksi})(63 \mathrm{in})(6.25 \mathrm{in})=1171.4^{\mathrm{k}}\right.
\end{aligned}
$$

Since AsFy $\quad \therefore \Sigma Q_{n} \therefore$ Partially, composite

Brenda Barrett Existing Framing

$$
\begin{aligned}
& x=\frac{A_{s} F_{y}-\varepsilon Q_{n}}{2 b_{f} F_{y}}=\frac{278.5-137.6}{2(4)(50)}=0.352^{\prime \prime}>0.35^{\prime \prime} \\
& \therefore N A \text { is in wet } \\
& a=\frac{137.6}{0.85(3.5)(63)}=0.734^{\prime \prime} \Rightarrow y_{2}=6.25-\frac{0.734}{2}=5.88^{\prime \prime} \\
& \phi M_{n}=0.9\left[137.6\left(5.88^{\prime \prime}\right)+278.5\left(\frac{12.2}{2}\right)-2(50)(4)(0.352)\left(\frac{0.352}{2}\right)\right. \\
& \phi M_{n}=186.2^{1 \mathrm{k}}>M_{u}=131.6^{1 \mathrm{k}} \therefore \text { OK }
\end{aligned}
$$

check unshoeld Strength

$$
\begin{aligned}
& w_{v}=1.4(48)\left(10^{\circ}\right)+1.4(19)=0.6986 \mathrm{kIf} \\
& w_{v}=1.2(48(10)+19)+1.6(20)\left(10^{\prime}\right)=0.9188 \mathrm{kIf}
\end{aligned}
$$ construction LL

$$
M=\frac{0.9188(21)^{2}}{8}=50.6^{1 \mathrm{k}}
$$

$O M \cap$ (Table $3-2)=92.6^{1 k}>50.6^{1 k} \therefore$ ok for unshorn stragth

Wet concrete deflection

$$
\begin{aligned}
& W_{w c}=48(10)+19=0.499 \mathrm{klf} \\
& I_{x}=130 \mathrm{~m}^{4} \\
& \Delta_{w c}=\frac{5(0.499)\left(21^{4}(1728)\right.}{384(29000)(130)}=0.58^{\prime \prime}<\frac{l}{360}=\frac{21(12)}{360}=0.7^{\prime \prime} \\
& \quad \therefore 0 \mathrm{~K}
\end{aligned}
$$

Brandon Barrett Existing Framing
Live Loud Deflection

$$
\begin{aligned}
& W_{\text {ul }}=98.2(10)=0.982 \mathrm{klf} \\
& I_{\text {Ls }} \\
& \begin{array}{l|lll}
& 5.5 & 5.88 & 6 \\
\hline & 0.35 & 378 & 381.52 \\
\hline
\end{array}
\end{aligned}
$$

$$
\begin{gathered}
I_{L B} \approx 381.5 \otimes>2=5.88 \quad \xi^{1} \sum Q_{n}=137.6^{\mathrm{k}} \\
\Delta_{L L}=\frac{5(0.982)(21)^{4}(1728)}{384(29000)(381.5)}=0.39^{11}<\frac{\ell}{360}=0.7^{11} \\
\therefore 0 \mathrm{k}
\end{gathered}
$$

$\Rightarrow W 12 \times 19(16)$ Infill Beam is oK

Brevon Burrett Existing Frumng
$\underline{w} 21 \times 50$ (30) Girue Cherk
Live Lood Reauction:

$$
\begin{aligned}
& K_{L L} A_{T}=1148 \mathrm{ft}^{2} \\
& L_{O}=100 \times \left\lvert\, \begin{array}{l}
0.5 \\
L_{V}=1.25+\frac{15}{\sqrt{1198}}=0.693=69.3 \mathrm{PSF} \\
\quad 1.2(68)+1.6(69.3)=192.5
\end{array}\right.
\end{aligned}
$$

point Loods from Infill Beans

$$
\begin{aligned}
& P=192.5\left(10^{\circ}\right)\left(\frac{21^{\prime}}{}{ }^{\prime}\right)+192.5\left(10^{1}\right)\left(\frac{19}{2}\right)=38.5^{\mathrm{k}} \\
& M v=P a=38.5^{\mathrm{k}}\left(10^{\circ}\right)=385^{1 \mathrm{k}}
\end{aligned}
$$

Check composite streagth

$$
\text { beff }=\left\lvert\, \begin{array}{l|l}
\frac{19(12)}{2}=14 \\
\frac{30(12)}{8}=45 & \frac{30(12)}{8}=45 \\
\frac{21(12)}{2}=126
\end{array}=90 \mathrm{in} .\right.
$$

Check shear stud caparity

$$
\begin{aligned}
& n=30 \Longrightarrow \sum Q_{n}=\frac{30}{2}+17.2=258^{k} \\
& \text { Arfy }=\left(14.7 \mathrm{in}^{2}\right)(50 \mathrm{kFi})=735^{k} \\
& 0.85 f^{\prime} \text { cbefft }=0.85(3.5 \mathrm{ksi})\left(90^{\prime \prime}\right)\left(6.25^{\prime \prime}\right)=1673^{k}>\sum Q_{n}=258^{k} \\
& \therefore \text { Porvillly } \\
& \text { compisite }
\end{aligned}
$$

Brendan Barrett Existing, Framing,

$$
\begin{aligned}
& x=\frac{A_{s} F_{y}-\sum Q_{n}}{2 b_{f} F_{y}}=\frac{735-258}{2(6.53)(50)}=0.73>t_{f}=0.535^{\prime \prime} \\
& \left.a=\frac{258}{0.85(3.5)(901}=0.96^{\prime \prime}=>y 2=6.25-\frac{0.96}{2}=5.77^{\prime \prime}\right]^{\text {web }} \\
& \varphi M_{n}=0.9\left[258\left(5.77^{\prime \prime}\right)+735\left(\frac{20.8}{2}\right)-2(50)(6.53)(0.73)\left(\frac{0.73}{2}\right)\right] \\
& \emptyset M_{n}=671.9^{1 k} \geq M_{v}=385^{1 k} \therefore O K
\end{aligned}
$$

Check unshared Strength

$$
\begin{aligned}
& w_{v}=1.4(48)\left(\frac{21}{2}+\frac{19}{2}\right)+1.4(50)=1.414 \mathrm{kl1f} \\
& w_{v}=1.2\left(48\left(\frac{21}{2}+\frac{19}{2}\right)+50\right)+1.6(20)\left(\frac{21}{2}+\frac{19}{2}\right)=1.852 \mathrm{klf} \\
& w_{v}=\frac{1.852(30)^{2}}{8}=208.3^{1 \mathrm{k}}
\end{aligned}
$$

$\theta M_{1}($ Table $3-2)=413^{1 k}>208.3^{\text {k }} \therefore$ ok for unshored street

Wet concrete deflection

$$
\begin{aligned}
& w_{\text {we }}=48\left(\frac{21+19}{2}\right)+50=1.010 \mathrm{klf} \\
& I_{x}=890 \mathrm{in}^{4}(\text { Table } 3-2) \\
& \Delta_{w e}=\frac{5(1.010)(30)^{4}(1728)}{384(29000)(890)}=0.71^{11}<\frac{l}{360}=\frac{30(12)}{360}=10^{\prime \prime}
\end{aligned}
$$

Brendin Barrett Exist:ns Framng
Live Lood Deflection

$$
\begin{array}{rl|l|l|l}
\hline \text { WLL }^{2}= & 69.3\left(\frac{21+19}{2}\right)=1.386 \mathrm{kIf} \\
I_{L \beta} & & 5.5 & 5.77 & 6 \\
& Y_{1} & 0.535 & 2260 & 2308 \\
\hline & & 2.73 & & 2287 \\
\hline 2.91 & 2020 & 2058 & 2090
\end{array}
$$

$I_{L B} \approx 2287 \mathrm{in}^{4} Q \quad y_{2}=5.77 \quad \sum Q_{n}=258^{\mathrm{k}}$

$$
\begin{gathered}
\Delta_{L L}=\frac{5(1.386)(30)^{4}(1728)}{384(24000)(2287)}=0.38^{\prime \prime}<\frac{l}{360}=1^{11} \\
\therefore 0 \mathrm{~K}
\end{gathered}
$$

$\Rightarrow W 21 \times 50(30)$ Girver is ok

Brendan Barret: Existing Framing
w 21×44 (30) Grover Chirk
Live Lad Reduction

$$
\begin{aligned}
& K_{\text {LL }} A_{T}=30(21)=630 \mathrm{ft}^{2}>400 \mathrm{ft}^{2} \\
& L_{0}=100 \times \max \left\lvert\, 0.25+\frac{15}{\sqrt{630}}=0.848=84.8 \mathrm{pSF}\right. \\
& W_{0}=1.4(68)=95.2 \mathrm{pSF} \\
& \quad 1.2(68)+1.6(84.8)=217.28 \mathrm{PSF}=\text { controls }
\end{aligned}
$$

Paint Loads from Infill Bemas:

$$
\begin{aligned}
& P=217.28(10)\left(\frac{21}{2}\right)=228^{k} \\
& M_{V}=22.8^{k}\left(10^{\circ}\right)=228^{1 k}
\end{aligned}
$$

Check composite strength

$$
\text { Def }=\left\lvert\, \begin{aligned}
& 1^{1-8^{\prime \prime}} \\
& \min
\end{aligned} \frac{30(12)}{8}=45+\begin{aligned}
& \frac{30(12)}{8}=45 \\
& \min
\end{aligned} \frac{21(12)}{2}=126.67 \mathrm{in}\right.
$$

Check sher stud capacity:

$$
n=30 \Rightarrow S Q_{n}=\frac{30}{2} \times 172=258^{\mathrm{k}}
$$

Brendon Barretz Existiny Froming

$$
\text { As } F_{y}=\left(13.0 \mathrm{in}^{2}\right)(50 \mathrm{Ksi})=650 \mathrm{~K}
$$

$0.85 \mathrm{f}^{\prime}$ (beff $t=0.85(3.5 \mathrm{ksi})(46.67 \mathrm{in})(6.25 \mathrm{in})=867.8^{\mathrm{k}}$
Since Asfy $0.85 f^{\prime}$ befeft $>\sum Q_{n} \therefore$ Partially composite

$$
\begin{aligned}
& x=\frac{A_{5} F_{y}-\sum Q_{n}}{2 b_{f} F_{7}}=\frac{650-258}{2(6.50)(501}=0.6^{\prime \prime}>t_{f}=0.455^{\prime \prime} \\
& a=\frac{258}{0.85(3.5)(46.67)}=1.86^{\prime \prime}=>y_{2}=6.25-\frac{1.80}{2}=5.72^{\prime \prime} \\
& O m_{n}=0.9\left[258(5.32)+650\left(\frac{20.7}{2}\right)-2(50)(6.5)(0.6)\left(\frac{0.6}{2}\right)\right] \\
& \varphi M_{n}=598.7^{1 k}>M_{C}=228^{1 \mathrm{k}} \therefore O K
\end{aligned}
$$

Check unshored strengh

$$
\begin{aligned}
& w_{v}=1.4(48)\left(\frac{21}{2}\right)+1.4(44)=0.7672 \mathrm{k} 1 \mathrm{f} \\
& w_{v}=1.2\left(48\left(\frac{21}{2}\right)+44\right)+1.6(20)\left(\frac{21}{2}\right)=0.9936 \mathrm{kIf} \\
& M_{v}=\frac{0.9936(30)^{2}}{8}=111.8^{1 \mathrm{k}}
\end{aligned}
$$

$\sigma m_{n}\left(\right.$ Table 3-2) $=358^{1 K}>111.8^{1 K} \therefore$ oK for unshoed strongth
Wet Conlrete Deflection

$$
\begin{aligned}
& W_{\text {we }}=48\left(\frac{21}{2}\right)+44=0.548 \mathrm{KIf} \\
& I_{x}=843 \mathrm{ln}^{4} \quad(\text { Table } 3-2) \\
& \left.\Delta_{w c}=\frac{5(0.548)(30)^{4}(1728)}{384(29000)(843)}=0.4\right)^{\prime \prime} \angle \frac{l}{360}=\frac{30 c(2)}{360}=1^{\prime \prime}
\end{aligned}
$$

Brendan Barrett Existing Framing
Live Load Deflection

$$
w_{\text {Lr }}=84.8\left(\frac{21}{2}\right)=0.8904 \mathrm{kIF}
$$

$I_{L B}$
y_{1}

	5	5.32	5.5
0.450	1930	1974.8	2000
0.6		1961.7	
2.92	1720	1758.4	1780

$$
\begin{aligned}
I_{L B} & \approx 1961.7 \mathrm{in}^{4} @ y_{2}=5.32^{\prime \prime} \xi \sum Q_{n}=258^{k} \\
\Delta_{L L} & =\frac{5(0.8904)(30)^{4}(1728)}{384(29000)(1961.7)}=0.29^{\prime \prime}<\frac{l}{360}=1^{\prime \prime} \\
& \therefore \text { ok } \\
& \Rightarrow W 21 \times 44(30) \text { Girder is ok }
\end{aligned}
$$

Brandon Barrett Existing Framing
Exterior Column Check (W 12×65)
Typical Loading
Dead $=68$ PSF
Live = 100 PSF
Curtain Wall LaO $=15$ PSF
Roof Live $=30$ PSF
Roof Dead $=148$ PSF
Live Loud Reduction:

$$
\begin{aligned}
& A_{T}=\left(\frac{21}{2}+1^{1}-8^{\prime \prime}\right)\left(30^{\circ}\right)=365 \mathrm{ft}^{2} \\
& K_{L L}=3 \Rightarrow K_{L L} A_{T}=1095 \mathrm{ft}^{2}>400 \mathrm{ft}^{2} \\
& L_{0}^{F}=100 \times{ }_{0}=10.25+\frac{15}{\sqrt{1045}}=0.70=70 \mathrm{PSF}
\end{aligned}
$$

Lacing:
Typical Floor $=1.2(68)+1.6(70)=193.6$ PSF

$$
\begin{aligned}
\text { Root } & =1.2 D+1.6\left(L_{R}\right. \text { or for R) } \\
& =1,2(148)+1.6(30) \\
& =225,6 \mathrm{PSF}
\end{aligned}
$$

$P_{0}=6$ teperal Floors + Roof + curter war

$$
\begin{aligned}
& =6(193.6 \mathrm{PSF})\left(365 \mathrm{ft}^{2}\right)+(225.6 \mathrm{psF})\left(365 \mathrm{ft}^{2}\right)+15 \mathrm{Pst}(90)\left(3 \mathrm{o}^{\circ}\right) \\
& =547^{\mathrm{k}}
\end{aligned}
$$

$w 12 \times 65$ unbraced length $\approx 15^{\prime}$

$$
\varphi P_{n}=663^{k}>547^{k} \quad \therefore O K
$$

Brendan Barrett
Interior Column (heck (w $12+106$)
Typical hooding:
Dead = 68 PSF
Live $=100$ PSF
Roof Live $=30 \mathrm{PSF}$
Roof Dead: 148 PSF
Live Load Reduction:

$$
\begin{aligned}
& A_{T}=\left(\frac{21}{2}+\frac{20}{2}\right)(30)=615 \mathrm{ft}^{2} \\
& K_{L L}=\frac{4}{\gamma} \Rightarrow K_{L L} A_{T}=2460 \mathrm{ft}^{2}
\end{aligned}
$$

for interior colum

$$
L_{0}=100 \times \left\lvert\, \begin{aligned}
& 0.5 \\
& 0.25+\frac{15}{\sqrt{2460}}=0.552
\end{aligned}=55.2 \mathrm{pSF}\right.
$$

Looping:
Typical Floor: $1.2(68)+1.6(55.2)=170$ PSt

$$
\text { Roof }=1.2(148)+1.6(30)=225.6 \mathrm{PSF}
$$

$P_{u}=b$ tropical $F(001 s+$ coot

$$
\begin{aligned}
& =6(170 \text { PSF })\left(615 \mathrm{ft}^{2}\right)+225.6 \mathrm{PSF}\left(615 \mathrm{ft}^{2}\right) \\
& =766^{\mathrm{k}}
\end{aligned}
$$

$w 12 \times 106$ Unbraced length $\approx 15^{\circ}$

$$
\phi P_{n}=1100^{K}>766^{K} \quad \therefore O K
$$

6. Alternative Framing Systems for Gravity Loads

6.1 Alternate Design \#1: Non-Composite Steel Framing

The same bay that was analyzed above will now be redesigned using non-composite steel framing. The deck is designed using the Vulcraft Catalog.

Briton Borcett Altercate Design \#l
Design \#1: Non-composite Steel Framing

Misc $\Delta L=20$
$21^{\circ} \quad$ Slab $=57$
Live $=100$

Decking
3 Span Max construction clean spoon $\geq 10^{\prime}$
"Try $3 C$ is W/ " NW concrete
Max construction span $=14^{\prime}-2^{\prime \prime} \geq 10^{\prime} \therefore O K$
Total Load $=100+57+10+10=177$ PSF LL Slab: M/E/r/L Franny
Allowable load @10'こ 193 PSF >177 PSF \therefore OK
$W_{\text {LL }}=100 \mathrm{PSF} \angle l / 240=155 \mathrm{PSF} \therefore$ OK
\Rightarrow use $3<18 \mathrm{w} / 3^{\prime \prime} \mathrm{NW}$ concrete

Bream Barrett Alternate Design स 1
Infill Beam Design
Live Load Deflection:

$$
\begin{aligned}
& \Delta_{\text {LL }}=\frac{l}{360}=\frac{21(12)}{360}=0.7{ }^{\prime \prime} \\
& W_{\text {LL }}=98.2 \operatorname{PSF}\left(10^{\circ}\right)=0.982 \mathrm{kIf} \\
& I_{\text {req }}=\frac{5(0.982)(21)^{4}(1728)}{384(29000) I} \leq 0.7^{\prime \prime} \\
& I_{\text {req }} \geq 211 \mathrm{in}^{4}
\end{aligned}
$$

Total Load Deflection:

$$
\begin{gathered}
\Delta_{\text {TL }}=\frac{l}{240}=\frac{21(12)}{240}=1.05^{\prime \prime} \\
W_{\text {TL }}=(57+10+10+98.2)\left(10^{\prime}\right)=1.752 \mathrm{klf} \\
I_{\text {req }}=\frac{5(1.752)(21)^{4}(1728)}{384(29000) I} \leq 1.05^{\prime \prime} \\
\text { Freq } \geq 251 \mathrm{in}^{4}
\end{gathered}
$$

Try W $14 \times 30 \quad I=291$ in 4

Brenom Barrett Alternate Design WI
Check Flexure:

$$
\begin{aligned}
W_{v}= & 1.4(77)=107.8 \\
& 1.2(77)+1.6(98.2)=249.5 \quad \mathrm{PSF} \Leftrightarrow \text { controls } \\
W_{0}= & 249.5\left(10^{\prime}\right)=2495 \mathrm{pLF} \\
M_{0}= & \frac{2495(21)^{2}}{8}=137.5^{1 \mathrm{k}}
\end{aligned}
$$

$\varphi m_{n}($ Table $3-2)=177^{1 K}>M_{U}=137.5^{1 K} \therefore O K$
\Rightarrow use w 14×30 Infill Beams
Spandrel Girder Design
Live Load Deflection:

$$
\begin{aligned}
\Delta_{L L}= & \frac{l}{360}=\frac{30(12)}{360}=1^{\prime \prime} \\
P_{L L}= & 848(10)\left(\frac{21}{2}\right)=18.9^{k} \\
\Delta_{L L}= & \frac{8.9(10)}{24(29000)}\left[3(30)^{2}-4(10)^{2}\right](1728) \leq 1^{\prime \prime} \\
& I_{\text {req }} \geq 508 \mathrm{in}^{4}
\end{aligned}
$$

Prencom Bouleft Altercate Design th
Total Load Deflection:

$$
\begin{aligned}
& \Delta_{T L}=\frac{l}{240}=\frac{30(12)}{240}=1.5^{\prime 1} \\
& P_{T L}=(77+84.8)(10)\left(\frac{21}{2}^{\prime}\right)=17.0^{K} \\
& \Delta_{T L}= \frac{34.0(10)}{24(29000) I}\left[3(30)^{2}-4(10)^{2}\right](1728) \leq 1.5^{11} \\
& \text { Freq } \geq 647 \mathrm{in}^{4}
\end{aligned}
$$

Try $W 21 \times 44 \quad I=843$ in 4
Check Flexure

$$
\begin{aligned}
W_{u}= & 1.4(77)=107.8 \\
& 1.2(77)+1.6(84.8)=228.1 \quad \rho S F=\text { controls } \\
P_{U}= & 228.1\left(10^{\circ}\right)\left(\frac{21}{2}\right)=23.95^{\mathrm{k}} \\
M_{U}= & P_{a}=23.95\left(10^{\circ}\right)=239.5^{1 \mathrm{k}} \\
\varphi M_{n}= & 358^{1 \mathrm{k}}>M_{u}=239.5^{1 \mathrm{k}} \therefore \text { OK }
\end{aligned}
$$

\Rightarrow use $W 21 \times 44$ sponger girder

Girder Design
Live Load Deflection $\Rightarrow \frac{l}{360}=1^{11}$

$$
\begin{aligned}
P_{L L} & =64.3(10)\left(\frac{21}{2}\right)+69.3(10)\left(\frac{19}{2}\right)=13.9^{\mathrm{k}} \\
\Delta_{L L} & =\frac{13.9(10)}{24(29000) I}\left[3(30)^{2}-4(10)^{2}\right](1728) \leq 1^{11} \\
& I_{\text {req }} \geq 804 \mathrm{in}^{4}
\end{aligned}
$$

Total Load Deflection $\Rightarrow \frac{l}{240}=1.5^{\circ}$

$$
\begin{aligned}
& P_{T L}=(77+69.3)(10)\left(\frac{21}{2}\right)+(77+69.3)(10)\left(\frac{19}{2}\right)=29.3^{k} \\
& \Delta_{T L}=\frac{29.3(10)}{24(29000) I}\left[3(30)^{2}-4(10)^{2}\right](1728) \leq 1.5^{11} \\
& F_{\text {req }} \geq 1130 \mathrm{in}^{4}
\end{aligned}
$$

Try w $24 \times 55 \quad I=1350 \mathrm{in}^{4}$
Flexure check

$$
\begin{aligned}
& W_{v}=\left\lvert\, \begin{array}{l}
1.4(77)=107.8 \mathrm{PSF} \\
1.2(77)+1.6169 .3)=203.28 \mathrm{PSF}
\end{array}\right. \\
& P_{U}=203.28(10)\left(\frac{21}{2}\right)+203.28(10)\left(\frac{19}{2}\right)=40.6^{k} \\
& M_{U}=40.6^{k}\left(10^{\prime}\right)=406^{1 k} \\
& O M_{n}=503^{1 k}>M U=406^{1 k} \therefore \text { OK } \\
& \Rightarrow \text { use W } W 24 \times 55 \text { Girder }
\end{aligned}
$$

6.2 Alternate Design \#2: One-Way Slab with Edge Beam

This 21^{\prime} x 30 ' bay will now be designed using a one-way slab with edge beams. The slab will span parallel to the 21 ' direction.

Brevier Burletta Alternate Design \#z
Design \# 2: ore - way Slab

Slab Design

$$
f^{\prime} c=3500 \mathrm{psi}
$$

$L W$ concrete $\Rightarrow 115$ CF
Minimum slab thickness:
From ACI 318-14 table 7.3.1.1

- one end continuous $\Rightarrow t=\frac{l}{24}=\frac{21(12)}{24}=10.5^{\prime \prime}$ (end bay) \therefore use 11 "slab

$$
\begin{aligned}
\partial= & 11-0.75-0.5 / 2=10^{\prime \prime} \\
& \text { clear cover } \\
& +4 \text { bors }
\end{aligned}
$$

Locos:
Dead Load $=\left(\frac{111}{12}\right) \times 115$ PCP +20 PSF $=126$ PSF
Live Lood $=100 \times 0.25+\frac{15}{\sqrt{30 \times 21}}=84.8$ PSF

Brevian Barrett Alternate Desitn \#z

$$
\begin{aligned}
& w_{0}=\left\lvert\, \begin{array}{l}
1.4(126)=174.4 \mathrm{PSF} \\
1.2(126)+1.6(84.8)=286.9 \mathrm{PSF}
\end{array}\right. \\
& M L=\frac{286.9\binom{\text { Lnit stip methud }}{1}(21)^{2}}{8}=15.8^{1 \mathrm{k}} \\
& \text { As } \geq \frac{\mu_{v}}{\varphi F_{y}\left(\partial-\frac{a}{2}\right)}=\frac{15.8 \lambda 12}{0.9(60)(\underbrace{(0,5)(10)}_{\text {Assume }} j d}=0.37 \mathrm{in}^{2} / \mathrm{ft} \\
& a=\frac{\left(0.37 \mathrm{in}^{2}\right)(60 \mathrm{ksi})}{0.85(3.5 \mathrm{ksi})(12 \mathrm{in})}=0.62 \Rightarrow c=\frac{0.62}{0.85}=0.23 \\
& \varepsilon_{s}=\frac{0.003(10-0.73)}{0.73}=0.038>0.005 \\
& \therefore \text { Steel yieloed }
\end{aligned}
$$

tasion controlled $\Rightarrow \varphi=0,9$
\Rightarrow use \#6 (0) 12"O.c. $A_{5}=0,44 \mathrm{in}^{2} / \mathrm{ft}$
Mirimum Renforenent:

$$
\begin{array}{r}
\text { Asmin }=0.0018 b h=0.0018(12)(11)=0.237 \mathrm{in}^{2}<0.44 \mathrm{in}^{2} \\
\therefore 01
\end{array}
$$

Mat Spacing:

$$
S_{\text {max }}=\left.\left.\right|_{\text {min }}\right|_{18} ^{3 n}=3(11)=33^{\prime \prime}=\text { controls } \therefore \text { ok }
$$

Brevidar Berretta Alternate Design $\# 2$
Max sparing for Crack (antral:

$$
\begin{aligned}
& S=\left\lvert\, \begin{array}{l}
15\left(\frac{40000}{f_{s}}\right)-2.5 c_{c}=15\left(\frac{40000}{\frac{2}{3}(60000)}\right)-2.5(0.75)=13125 \\
12\left(\frac{40000}{f_{s}}\right)=12\left(\frac{40000}{\frac{2}{3}(60000)}\right)=12^{11}
\end{array}\right. \\
& S_{\text {max }}=12^{\prime \prime} \geq 12^{\prime \prime} \quad \therefore \text { Ok }
\end{aligned}
$$

Check ore way Shear:

$$
\begin{aligned}
& v_{v}=\frac{1.15 w_{v} l}{2}=\frac{1.15(286.9)(21)}{2}=3.5^{k} \\
& \begin{aligned}
\phi_{v_{c}} & =\phi 2 \lambda \sqrt{\text { lc }^{\prime}} b_{w} \partial \\
& =0.75(2)(0.75) \sqrt{3500}(12)(10) \\
& =8.0^{k}>3.5^{k}, \text { ok }
\end{aligned}
\end{aligned}
$$

Check Flexure:

$$
\begin{aligned}
& A_{s} F_{y}=0.85 \mathrm{f}^{\prime} \mathrm{ba} \\
& \left.a=\frac{0.41(60)}{0.85(35)(12)}=0.74 \Rightarrow c=\frac{0.24}{0.85}=0.8\right) \\
& \partial=11-0.75-0.75 / 2=9.88 \mathrm{in} \\
& \varepsilon_{s}=\frac{0.003(9.88-0.87)}{0.87}=0.03>0.005 \\
& \therefore \text { Steel yields } \varnothing=0.9
\end{aligned}
$$

Brendan Barrett Alternate Design ty

$$
\begin{aligned}
\phi m_{n} & =\varphi A_{s} F_{y}\left(0-\frac{9}{2}\right) \\
& =0.9(0.44)(60)\left(9.88-\frac{0.74}{2}\right) \\
& =18.8^{1 k}>m_{v}=15.8^{1 k} \therefore 0 k
\end{aligned}
$$

Sinkage and Temperature Reinforcenat:

$$
\begin{aligned}
& A(S+T)=0.0018 b h=0.0018(12)(11)=0.237 \mathrm{in}^{2} \\
& S_{\text {max }}=\left.\right|_{\text {min }} ^{5 h} 18 \quad 5(11)=55^{\prime \prime} \\
& =18^{\prime \prime}=\text { controls } \\
& \Rightarrow \text { use } \# 5 @ 12^{\prime \prime} \quad \text { As }=0.31 \mathrm{in}^{2}
\end{aligned}
$$

Bean Design

$$
\begin{aligned}
& W_{v}=286.9 \text { PSF }\left(\frac{21}{2}\right)^{\prime}=3012.5 \text { PLF } \\
& M_{v}=\frac{3912.5(30)^{2}}{8} \times 11 \mathrm{Self} \text { weight }=3728^{1 \mathrm{k}} \\
& \text { of beam }
\end{aligned}
$$

Calculate tentative P

$$
\begin{aligned}
& \rho=\frac{0.25 f^{\prime} c \beta_{1}}{f_{y}}=\frac{0.25(3.5)(0.85)}{60}=0.0124 \\
& \mu_{n}=\frac{\mu v}{\phi}=\frac{322.8}{0.9}=414.2^{1 \mathrm{k}} \\
& \omega=\frac{\rho f_{y}}{f^{\prime} c}=\frac{00124(60)}{3.5}=0.213
\end{aligned}
$$

Brendon Barrett Alterrute Design $t 12$

$$
\begin{aligned}
R & =\omega f^{\prime} c(1-0.59 \mathrm{w}) \\
& =0.213(3.5)(1-0.59(0.213)) \\
& =0.65 \mathrm{ksi} \\
M_{n} & =R b \delta^{2} \\
b d^{2} & =\frac{M_{n}}{R}=\frac{414.2 \times 12}{0.65 \mathrm{ks}}
\end{aligned}
$$

Try, $b=18^{\prime \prime} \quad \partial=24^{\prime \prime} \quad h=27^{\prime \prime}$

$$
\text { As req }=\frac{M_{v}}{6 F_{y j d}}=\frac{372.8 \times 12}{0.9(60)(0.95)(24)}=13.63 \mathrm{in}^{2}
$$

use $4 \# 9 \quad A_{s}=4.0 \mathrm{in}^{2}$
Creck Flexure:

$$
\begin{aligned}
\text { As } F_{y} & =0.85 f^{\prime}(b a \\
a & =\frac{4(60)}{0.85(7.5)(18)}=4.48=>c=\frac{4.48}{0.85}=5.27 \\
\varepsilon_{5}= & \frac{0.003(24-5.27)}{5.27}=0.01>0.005 \\
& \therefore \text { rensin contrilled } 0=0.9 \\
\theta M_{n} & =0.9(4)(60)\left(24-\frac{4.48}{2}\right) \\
& =391.7^{1 k}>372.8^{1 k} \quad \therefore 0 \mathrm{~K}
\end{aligned}
$$

Brendan Barrett Alternde Design $\# 2$
Cheek Shear:

$$
\begin{aligned}
& w_{U}=3012.5 \text { PLy }+\frac{27 \times 19}{144}+115=3.4 \mathrm{kIf} \\
& V_{v} \frac{w l}{2}=\frac{3.4(30)}{2}=51.0^{\mathrm{k}} \\
& \phi v_{c}=\theta 2 \lambda \sqrt{f^{\prime}\left(b_{w} d\right.} \\
& =0.75(2)(0.75) \sqrt{3500}(18)(24) \\
& =28.8^{k}<V_{v} \therefore \text { seed shear Renforment } \\
& V_{s}=\frac{V_{v}}{\varphi}-V_{c} \\
& =\frac{51.0}{0.75}-38.3 \\
& =29.7^{\mathrm{K}}
\end{aligned}
$$

check $8 \sqrt{\text { fec herd }}=204^{k}>$ vs \therefore ok
Solve for Stirrup Sparing

$$
\begin{aligned}
& S \leq \frac{A_{v} f_{y+\partial}}{v_{s}}=\frac{0.22(60)(24)}{29.7}=10.67^{\prime \prime} \\
& S_{\text {max }}=\left\lvert\, \begin{array}{l}
d / 2=12^{\prime \prime} \Leftarrow \text { governs } \\
\min
\end{array}\right. \\
& \therefore \text { use } 10^{11} \text { spading }
\end{aligned}
$$

Brendan Barrett Alternate Designers
$=>$ vie $\because 32$ branch Q $10^{\prime \prime}$ o.c.
Total Loos Deflection:

$$
\begin{aligned}
& I=\frac{b h^{3}}{12}=\frac{(18)(27)^{3}}{12}=29524 \mathrm{in}^{4} \\
& W_{\text {WE }}=\underbrace{226 \cdot \operatorname{PSF}\left(\frac{21}{2}\right)}_{\text {PL }+L L \text { from SIAD }}+\underbrace{\left(\frac{27 \times 18}{144}\right)}_{\text {Self wight of bean }} 115 \operatorname{PCF}=2761 \mathrm{PLF}
\end{aligned}
$$

$$
\begin{array}{r}
\Delta_{T L}=\frac{5(2.761)(30)^{4}(1728)}{384(4415)(29524)}=0.39^{11} \leq \frac{l}{240}=1.5^{11} \\
\therefore 0 \mathrm{~K}
\end{array}
$$

Live Loud Deflection:

$$
\begin{aligned}
& w_{\text {LL }}=100 \operatorname{PSF}\left(\frac{21}{2}\right)=1050 \text { PLF } \\
& \Delta_{L L}=\frac{5(1.050)(30)^{4}(1728)}{784(4415)(29524)}=0.15^{11} \leq \frac{\ell}{360}=1^{11} \\
& \therefore \text { OK }
\end{aligned}
$$

Brendan Barrett Alternate Design ± 2
Final Design Layout
$f^{\prime}=3500 \mathrm{ps}^{\prime}$
$f_{y}=60000 \mathrm{p}^{\mathrm{si}}$

Section View Along edge bean

6.3 Alternate Design \#3: Hollow Core Plank on Wide Flanges

The final design will be a hollow core plank slab on wide flanges. The hollow core plank was designed using Nitterhouse Prestressed Nicore Planks. The specification for the design used is included at the end of the section.

Brevorn Barrett Alternate Design \# 3
Design \#3: Hollow care Plank on wide Flanges

$$
\text { Misc } D L=20 \mathrm{PSF}
$$

Live $=100$ PSF

From Nitterhouse $\Rightarrow 6^{\prime \prime} \times 4^{\prime}-0 \quad$ Presterssed concrete Plank 1 Hour Fire Resistance Rating (Untapped)

Self weight $=48.75$ PSF
Superposed $D L=20$ PSF
Live Load $=100$ PSF
$W^{\prime}=1.2(20)+1.6(100)=184 \mathrm{PSF}$
$b^{\prime} / 2^{\prime \prime} \varnothing$ strands w/ max span $=15^{\circ}$
Sole Superimposed Service Loud = 273 PSF >184 PSF. T. OK Live Load Deflection:

$$
\begin{aligned}
& W_{L L}=100 \mathrm{PSF}\left(4^{\prime}\right)=400 \mathrm{PLF} \\
& E=57000 \mathrm{Ff}^{\prime} \mathrm{C}=57000 \sqrt{6000}=4415 \mathrm{kti} \\
& I=757 \mathrm{in}^{4} \\
& \Delta_{L L}=\frac{5(0.400)(15)^{4}(1728)}{384(4415)(757)}=0.14^{\prime \prime}<\frac{l}{360}=\frac{15(12)}{360}=0.5^{\prime \prime} \\
& \therefore \text { ok }
\end{aligned}
$$

Bradan Buriett Alternate Desiyn \#"?
Tatal Load Deflection:

$$
\begin{aligned}
& W_{T L}=(20+100)\left(4^{\prime}\right)=480 \mathrm{PLF} \\
& \Delta_{T L}=\frac{5(0.480)(15)^{4}(1728)}{384(44.5)(757)}=0.16^{\prime \prime}<\frac{e}{240}=0.75^{\prime \prime}
\end{aligned}
$$

Flexure check:

$$
\begin{aligned}
& W_{V}=184 \operatorname{PSF}\left(4^{\prime}\right)=736 \mathrm{PLF} \\
& \mu_{v}=\frac{736(15)^{2}}{8}=20.7^{1 \mathrm{k}} \\
& M_{\text {UIt }}=67.2^{\mathrm{k}} \geq \mu_{v}=20.7^{1 \mathrm{k}} \therefore \text { OK }
\end{aligned}
$$

W-Shape Design
Live Lood Reduction.

$$
\begin{aligned}
& K_{I L} A_{T}=(15+15)(21)=630 \mathrm{ft}^{2}=400 \mathrm{ft}^{2} \\
& L_{0}=100 \times \left\lvert\, \begin{array}{l}
0.5 \\
0.25+\frac{15}{\sqrt{630}}=0.848=84.8 \mathrm{psF}
\end{array}\right.
\end{aligned}
$$

Live Load Deflection: $\Rightarrow l / 360$

$$
\begin{aligned}
W_{\text {re }}= & 84.8 \operatorname{PSF}\left(15^{\prime}\right)=1.272 \text { Kif } \\
I_{\text {ren }}= & \frac{5(1.272)(21)^{4}(1728)}{384(29000) I} \leqslant \frac{21(12)}{360}=0.7^{\prime \prime} \\
& \text { Iren } \geq 274 \mathrm{in}^{4}
\end{aligned}
$$

Brenown Borrett Alterntie Design \pm /3
Total locd Deflection $=\supset \ell / 240$

$$
\begin{aligned}
& w_{\text {IL }}=(20+48.75+84.8)\left(15^{\circ}\right)=2.303 \mathrm{K1f} \\
& \text { Ireq }=\frac{5(2.303)(21)^{4}(728)}{384(24000) I} \leq \frac{21(12)}{240}=1.05^{11} \\
& I_{\text {rau }} \geq 331 \mathrm{in}^{4}
\end{aligned}
$$

Try $W 16 \times 31 \quad I=375 \mathrm{in}^{4}$
Check Flesure:

$$
\begin{aligned}
& w_{v}=\left\lvert\, \begin{array}{l}
1.4(20+48.75)=96.25 \mathrm{PSF} \\
1.2(20+48.75)+1.6(84.8)=218.18 \mathrm{PSF}
\end{array}\right. \\
& w_{0}=218.18(15)=3273 \mathrm{PLF} \\
& m_{v}=\frac{3273(21)^{2}}{8}=180.4^{1 k}
\end{aligned}
$$

$O M_{n}($ Table $3-2)=203^{1 K}>M_{u}=180.4^{1 k} \therefore O K$ \Rightarrow use $w 16 \times 31$ w-shape

Breath Barrett Alternate Design \#3
Girder Design
Live Load: 69.3 PSF (Some as Lu 21×50
Live Load Deflection.
Girl chare)

$$
\begin{aligned}
P_{L L} & =69.3(15)\left(\frac{21}{2}\right)+69.3(15)\left(\frac{19}{2}\right)=20.8^{k} \\
\Delta_{L L} & =\frac{20.8(30)^{3}(1728)}{48(29000) I} \leq 1^{11} \\
& I_{\text {ea }} \geq 697 \mathrm{in}^{4}
\end{aligned}
$$

Total Load Deflection:

$$
\begin{gathered}
P_{T L}=(20+48.75+69.3)(15)\left[\frac{21}{2}+\frac{19}{2}\right]=41.4^{\mathrm{k}} \\
\Delta_{T L}=\frac{41.4(30)^{3}(1728)}{48(29000) F} \leq 1.5^{11} \\
I_{\text {req }} \geqslant 925 \mathrm{in}^{4}
\end{gathered}
$$

Try w $21 \times 55 \quad I=1140 \mathrm{in}^{4}$
Flexure check:

$$
\begin{aligned}
& W_{V}=1 \begin{array}{l}
1.4(20+48.75)=96.25 \text { PSF } \\
1.2(20+48.75)+1.6(69.3)=193.4 \text { PSF }
\end{array} \\
& P_{v}=193.4(15)\left(\frac{21}{2}\right)+193.4(15)\left(\frac{19}{2}\right)=58.0^{k} \\
& M=\frac{58.0(30 j}{4}=435^{1 k} \angle \phi M_{1}=473^{1 k} \therefore O K \\
& \Rightarrow \text { use w } 21 \times 55 \text { Girder }
\end{aligned}
$$

Brendan Barrett Alternate Desire: H3
Final Design Layout

Slab $=6^{\prime \prime} \times 4^{\prime}-0$ Prestiessed Concrete Nilore Prank 1 Hour Fire Resistance Rating (Untopeed)

7.Systems Comparison

Considerations	Composite Steel Framing	Non-Composite Steel Framing	One- Way Slab	Hollow Core Plank on Wide Flanges
Architectural				
Depth	27"	30"	11"	27"
Fire Rating	2 Hour	2 Hour	2 Hour	1 Hour
Construction Information				
Cost/SF	\$7.53	\$7.60	\$5.96	\$7.17
Weight	57.0 PSF	65.7 PSF	142.4 PSF	57.1 PSF
Future Design Considerations				
Advantages	Lightweight, fairly cheap, minimal formwork	Lightweight, fairly cheap, minimal formwork	Smallest depth, cheapest option, minimal vibrations	Lightweight, fairly cheap, faster construction
Disadvantages	Large Depth, vibration	Largest depth, vibration	Largest weight, requires most formwork	Large depth, difficult to fit rectangular panels in irregular shaped bays
Further Research	N/A	Yes	Yes	No

Analyzing the four different systems shows that composite framing is the best option for this project as it is one of the cheaper, lightweight options that allows for an irregular layout. Moving forward, non-composite framing and one-way slab could be viable options as non-composite framing could reduce vibrations due to the larger depth while one way slab is the cheapest and smallest depth. The hollow core plank on wide flanges does not appear to be a viable option due to difficult constructability because of the building layout.

8.Lateral Analysis

This section analyzes the existing lateral system in the Brendan Iribe Center for Computer Science and Innovation. RAM Structural System was used to create a computer model as shown in Figure 3 below. In addition to the RAM model, hand calculations have been performed to validate the accuracy of this computer model.

Figure 3: RAM model

8.1 Modeling Information

Several factors were considered in the creation of this model
Diaphragm:
8. Assigned to be a rigid diaphragm at each level
9. Uniform dead and live load assigned from Notebook Submission A
10. Self-weight of diaphragm included in RAM

Moment Frames:

- Beams and columns are fixed-fixed
- Column bases are fixed-fixed with spread footings
- Self-weight of framing included in RAM

Braced Frames:

- Braces are pinned-pinned to beams/columns
- Column bases are fixed-fixed with spread footings
- Self-weight of framing included in RAM

Figure 4 shows a plan of the lateral members throughout the building. There are 17 separate lateral members, including moment frames, braced frames, combination of the two. Frames 1-10 continue from the base to the roof, while frames 11-17 continue from the ground to the $2^{\text {nd }}$ floor, which is the roof for the auditorium

Figure 4: LFRS plan

8.2 Model Validation

8.2.1 Stiffness Calculation

Frone 1 (Column Line IW)

Frome 3 (Colum Line BW.6)

$$
\begin{aligned}
& k_{\text {col }}=\frac{12(29000)(3 \times 2660)}{(25.5 \times 12)^{3}}=96.9 \mathrm{k}_{\text {in }} \\
& K_{\text {brace }}=\frac{32.9(29000)}{(29.6 \times 12)} \times \cos ^{2}(59.5) \times 2=1383.9 \mathrm{k}_{\text {in }} \\
& \text { Kbrace } 2=\frac{32.9(29000)}{(27.8 \times 12)} \times \cos ^{2}\left(66.1^{\circ}\right)=469.5 \mathrm{k} \text { in } \\
& K_{\text {totio }}=96.9+1783.9+469.5=1956.3 \mathrm{k} \mathrm{in}
\end{aligned}
$$

Frome 4 (colum Line AW)

$$
\begin{aligned}
& \xrightarrow{k} 3 w \\
& \begin{array}{l}
2 \\
\frac{2}{x} \\
\frac{5}{3} \\
3
\end{array} \\
& K_{\text {(0) }}=\frac{12(29000)(2 \times 2660)}{(25.5 \times 12)^{3}}=64.6 \mathrm{k} / \mathrm{n}
\end{aligned}
$$

*rome 5 (Colum Line 4W)

$$
\begin{aligned}
& K_{\text {col }}=\frac{12(29000)(6+2660)}{(25.5 \times 12)^{3}}=193.8 k i i_{1} \\
& K_{\text {Dace }}=\frac{32.9(29000}{(29.05 \times 12)} \times \cos ^{2}\left(61.4^{\circ}\right)=627.2 \mathrm{kn} \\
& K_{\text {total }}=193.8+627.2=821 \mathrm{k} / \text { in }
\end{aligned}
$$

Frame 6 (colum line 4w.3)

$$
\begin{aligned}
& k_{\text {col }}=\frac{12(24000)(2 \times 2660)}{(25.5 \times 12)^{3}}=64.6 k_{i_{1 n}} \\
& k_{\text {Douce }}=\frac{32.9(29000)}{(28.7 \times 12)} \cos ^{2}(62.5)=590.7 \mathrm{kin}_{\text {in }} \\
& k_{\text {total }}=64.6+590.7=655.3 \mathrm{k}_{\text {in }}
\end{aligned}
$$

Frome 7 (Colunn Line $9 E$)

$$
K_{\text {prace }} 2=\frac{35.2(29000)}{(28.4+12)} \times \cos ^{2}(63.7)+2=1176 \mathrm{k} / \mathrm{in}
$$

$$
k_{\text {total }}=141.4+1159.5+1176=2476.9 \mathrm{k} / \mathrm{in}
$$

Frome 8 (colum line DE)

$$
\begin{aligned}
& K_{\text {col }}=\frac{12(29000)(2 \times 1900)}{(25.5 \times 12)^{3}}=46.2 \mathrm{kin} \\
& \text { Kprace }=\frac{50(29000)}{(29.6 \times 12)} \times \cos ^{2}(59.5) \times 2=2103.1 \mathrm{kin} \\
& K_{\text {totul }}=46.2+2103.1=2149.3 \mathrm{k} \text { in }
\end{aligned}
$$

Frame 9 (column Line AE)
some as Frame 8 except $L=30^{\prime}-3^{\prime \prime}$

$$
\begin{aligned}
& \theta=\tan ^{-1}\left(\frac{25.5}{15.125}\right)=59.3^{\circ} \\
& k_{\text {col }}=46.2 \mathrm{k} / 1 \mathrm{in} \\
& K_{\text {brace }}=\frac{50(29004)}{(29.6 \times 12)}+\cos ^{2}\left(59.3^{\circ}\right) \times 2=2128 \mathrm{k} / \mathrm{in} \\
& k_{\text {total }}=46.2+2128=2174.2 \mathrm{k} / \text { in }
\end{aligned}
$$

Frore 10 (colum Line 10E)

$$
\begin{aligned}
& \rightarrow \text { DE CE. } \boldsymbol{C l} \\
& k_{\text {col }}=141.4^{k / i n} \\
& \text { brace }=\frac{44.7(29000)}{(28.4 \times 12)} \times \cos ^{2}(63.9)^{\circ} \times 2=1472.4 k \lambda_{1} \\
& \text { kyrule } 2=\frac{44.7(29000)}{(28.4 \times 12)} \times \cos ^{2}\left(62.7^{\circ}\right) \times 2=1493.4 \mathrm{kin} \\
& K_{\text {total }}=141.4+1472.4+1493.4=3107.2 \mathrm{k} \text { in }
\end{aligned}
$$

Frame II (Column Line 10)

$$
\begin{aligned}
k_{\text {col }} & =\frac{12(29000)(999+1710)}{(25.5 \times 12)^{3}} \\
& =32.9 \mathrm{k}_{\mathrm{in}}
\end{aligned}
$$

Frame 12 (Column Line AA)

$$
\begin{aligned}
K_{(t)} & =\frac{12(29000)(2 \times 1710)}{(25.5 \times 12)^{3}} \\
& =41.5 \mathrm{k} / \mathrm{in}
\end{aligned}
$$

Frame 13 (Column Lire (A)
$3 A \quad 3 A .1 \quad 4 A .1 \quad 5 A$

$$
\begin{aligned}
k_{\text {col }} & =\frac{12(29000)(722+795+2660+1110)}{(25.5 \times 12)^{3}} \\
& =64,6 \mathrm{k} / \mathrm{in}
\end{aligned}
$$

$$
\begin{aligned}
& K_{\text {brace }}=\frac{10.3(29000)}{27.33 \times 12}+\cos ^{2}(68.9) \times 2=236.1 \mathrm{k} \text { in } \\
& K_{\text {Total }}=64.6+236.1=300.7 \mathrm{k}_{\text {in }}
\end{aligned}
$$

Frame 14 (colum Line $3 C$)

Frame 15 (Column Line 10 A)

$$
\begin{aligned}
k_{\mathrm{cOl}} & =\frac{12(29000) \mathrm{c} 3(1110))}{(25.5 \times 12)^{7}} \\
& =40.4 \mathrm{k} / \mathrm{in}
\end{aligned}
$$

Frame 16 (Column Line JA)

$$
\begin{aligned}
K_{(0)} & =\frac{12(29000)(2(1110+1210))}{(25.5 \times 12)^{3}} \\
& =47.7 \mathrm{k} / 10
\end{aligned}
$$

$$
K_{\text {brute } 1}=\frac{10.3(29000)}{(28.97 \times 12)} \times \cos ^{2}(61.66) \times 2=387.2 \mathrm{kin}
$$

$$
\text { Kara } 2=\frac{11.7(29000)}{(36.06 \times 12)}+\cos ^{2}(45) \times 2=784.1 \text { kin }
$$

$$
K_{\text {Total }}=47.7+387.2+784.1=1218.7 \mathrm{k} \mathrm{Nn}_{\mathrm{n}}
$$

Freme 17 (Column Line 1A)

$$
k_{\text {col }}=\frac{12(29000)(3 \times 1110)}{(25.5 \times 12)^{3}}=40.4 \mathrm{k} / 10
$$

$$
\begin{aligned}
& \text { Korace }=\frac{7.08(290001}{(32.46 \times 12)} \times \cos ^{2}(51.89) \times 4=803.1 \mathrm{kin} \\
& K_{\text {rotal }}=40.4+803.1=843.5 \mathrm{k} / \text { in }
\end{aligned}
$$

8.2.2 Center of Rigidity Calculation

Frame Number	Element Direction	x	Y	Rx	Ry	Rx*Y	Ry*X
1	X		-110.5	490.49		-54199.5	
	y	156.4			525.99		82264.72
2	X		-96.9	47.25		-4578.09	
	y	115.75			44.06		5099.605
3	X		-126.3	1426.36		-180149	
	y	139.7			1330.10		185815
4	X		-155	31.32		-4854.41	
	y	174.5			56.50		9859.321
5	X		-137	559.92		-76709.2	
	y	137			600.44		82260.42
6	x		-145	446.91		-64802.5	
	y	129.2			479.26		61919.85
7	X		-186.5	301.86		-56297.1	
	y	1			2458.44		2458.437
8	X		-149.5	2133.28		-318925	
	y	-17.22			261.93		-4510.5
9	X		-225.8	2174.20		-490934	
10	X		-189.4	378.68		-71721.3	
	y	-28.7			3084.04		-88511.9
11	X		-107.67	26.62		-2865.82	
	y	29.25			19.34		565.64
12	X		-105.67	41.27		-4361.28	
	y	-19.5			4.34		-84.5896
13	X		-90.5	300.70		-27213.4	
14	x		-82.67	8.68		-717.862	
	y	-75.75			28.40		-2151.47
15	X		-45.75	3.52		-161.092	
	y	-69.2			40.25		-2785.04
16	X		0	1218.70			
17	y	-7.9			843.50		-6663.65
			Σ	9589.763503	9776.578	-1358490	325535.9

Table 1: COR calculation

$$
\begin{gathered}
\overline{X_{R}}=\frac{\sum R_{y} X}{\sum R_{y}}=\frac{325535.9}{9776.578}=33.29^{\prime} \\
\overline{Y_{R}}=\frac{\sum R_{x} Y}{\sum R_{x}}=\frac{-1358490}{9589.763}=-141.66^{\prime}
\end{gathered}
$$

8.2.3 Center of Mass Calculations

Figure 5: COM determination

Element	Area $\left(\mathrm{ft}^{2}\right)$	Weight(psf)	$\mathrm{W}(\mathrm{k})$	x	y	$\mathrm{W}^{*} \mathrm{x}$	$W^{*} \mathrm{Y}$
Floor (A)	9779	48	469.39	151.4	-116.25	71065.95	-54566.82
Floor (B)	13093	48	628.46	43.75	-181.5	27495.30	-114066.22
Floor (C.)	7914	48	379.87	-93.25	-192.25	-35423.06	-73030.39
Floor (D)	14911	48	715.73	-35.88	-65.15	-25680.32	-46629.68
Σ	45697		2193.456			37457.86416	-288293.1072

Table 2: COM calculation

$$
\begin{gathered}
\overline{X_{\text {COM }}}=\frac{\sum W_{x}}{\sum W}=\frac{37457.864}{92193.456}=17.08^{\prime} \\
\overline{Y_{\text {COM }}}=\frac{\sum W_{y}}{\sum W}=\frac{-288293.107}{92193.456}=-141.43^{\prime}
\end{gathered}
$$

Figure 6: COR and COM comparisons

The center of rigidity calculation is off in the x direction by about 19 feet in the x direction and about 36 feet in the y direction. The hand calculated center of rigidity could be off for a number of reasons. The most probable reason is the result of breaking the angled frames into its respective x and y components. In reality, the frame does not act in the x and y direction, it only acts in line with the frame. However, breaking the frame into components is necessary for performing this calculation by hand. The angled members are most certainly the cause of discrepancy between RAM and the hand calculations. The center of mass calculation is off by about 9 feet in the x and y direction. Due to the irregular geometry of the building floor plan, the building had to be broken into separate shapes as shown in Figure 5 on the previous page. This irregular shape will not result in an exact center of mass. In addition, RAM takes into account slap openings which the hand calculations do not, which also increases the discrepancy.

8.2.4 Total Shear into Frames

After comparing the total building shear of each case in RAM, it has been determined that Wind Case 1 (North-South direction) is the controlling lateral case. A building shear of 1254.26 kips is applied at the center of geometry, results in an eccentricity of 3.8^{\prime} from the center of rigidity. This yields a torsional moment of $4766.188 \mathrm{ft}-\mathrm{k}$.

							Direct Shear		Torsional Shear	Total Shear	RAM			
Frame	Rx	Ry	R	di	Ridi	Ridi ${ }^{2}$	Vdx	Vdy	Vt	V	Vx	Vy	V	\% error
1	490.49	525.99	719.20	107.63	77407.50	8331368.79	64.15	67.48	4.41	88.70	57.26	64.14	85.98	3.16
2	47.25	44.06	64.60	23.67	1529.08	36193.37	6.18	5.65	0.09	8.29	3.25	3.97	5.13	61.52
3	1426.36	1330.10	1950.30	60.50	117993.15	7138585.58	186.56	170.64	6.73	246.10	174.79	171.79	245.08	0.42
4	31.32	56.50	64.60	132.33	8548.52	1131225.39	4.10	7.25	0.49	7.84	0.00	4.33	4.33	81.03
5	559.92	600.44	821.00	78.00	64038.00	4994964.00	73.23	77.03	3.65	102.64	48.71	55.89	74.14	38.44
6	446.91	479.26	655.30	67.00	43905.10	2941641.70	58.45	61.48	2.50	82.33	48.77	52.82	71.89	14.52
7	301.86	2458.44	2476.90	37.30	92388.37	3446086.20	39.48	315.40	5.27	312.59	21.12	183.60	184.81	69.14
8	2133.28	261.93	2149.30	1.90	4083.67	7758.97	279.01	33.60	0.23	280.80	126.76	15.96	127.76	119.78
9	2174.20	0.00	2174.20	82.90	180241.18	14941993.82	284.37	0.00	10.28	274.09	4.63	0.95	4.73	98.28
10	378.68	3084.04	3107.20	67.90	210978.88	14325465.95	49.53	395.66	12.03	386.72	46.70	379.30	382.16	1.19
11	26.62	19.34	32.90	25.50	838.95	21393.23	3.48	2.48	0.05	4.23	1.78	2.44	3.02	39.95
12	41.27	4.34	41.50	36.60	1518.90	55591.74	5.40	0.56	0.09	5.51	1.18	1.46	1.88	193.69
13	300.70	0.00	300.70	51.67	15537.17	802805.52	39.33	0.00	0.89	38.44	10.31	0.47	10.32	272.49
14	8.68	28.40	29.70	86.80	2577.96	223766.93	1.14	3.64	0.15	3.67	0.11	2.82	2.82	30.03
15	3.52	40.25	40.40	90.30	3648.12	329425.24	0.46	5.16	0.21	5.39	0.52	5.45	5.47	1.52
16	1218.70	0.00	1218.70	141.20	172080.44	24297758.13	159.40	0.00	9.81	149.59	129.60	2.47	129.62	15.40
17	0.00	843.50	843.50	26.10	22015.35	574600.64	0.00	108.21	1.26	109.47	0.46	223.61	223.61	51.04
Σ	9589.76	9776.58			J [(k/in)*ft2]	83600625.19								

Table 3: Total shear into each frame

To check the torsional shear, an equilibrium check has been performed. $\Sigma\left(\mathrm{V}_{\mathrm{t}} * \mathrm{~d}_{\mathrm{i}}\right)=$ $(107.63 * 4.41)+(23.67 * 0.09)+(60.50 * 6.73)+\ldots(141.20 * 9.81) *(26.10 * 1.26)=4766.188 \mathrm{ft}-\mathrm{k}$. As previously stated when comparing center of rigidity and center of mass, the angled frame members throw off the total shear into each frame. Several frames, including frame 3,10, and 15 have percent error of less than 2%, whereas frames 12 and 13 have percent error of more than 100%. For lateral spot checks in this report, Frame 10 will be analyzed due to the similarity between the hand calculations and RAM.

8.2.5 Wind Load Comparisons

The wind load calculations from notebook submission A have been revised and are shown below.

	z (ft)	q_{z} (psf)	$\mathrm{p}_{\text {winward }}$	$\mathrm{p}_{\text {leeward }}$	$\mathrm{p}_{\text {roof }}$	Trib Height	Trib Weight	Story Force
Ground	18	17.86	11.93	-14.15		12.75	380	126.37
1	43.5	24.36	16.28	-14.15		20.085	380	232.23
2	58.17	26.40	17.64	-14.15		14.67	380	177.23
3	72.84	28.24	18.87	-14.15		14.67	380	184.07
4	87.51	29.85	19.94	-14.15		14.67	380	190.04
5	102.18	31.19	20.84	-14.15		14.67	380	195.05
Penthouse	116.85	32.34	21.61	-14.15		17.25	380	234.39
Roof (0'-68.33)	136.67	33.89	22.64	-14.15	-25.931	9.915	380	138.63
Roof (68.33-136.67')	136.67	33.89			-24.818	9.915	380	
Roof (136.67-273.33')	136.67	33.89			-14.479	9.915	380	
Roof (> 273.33')	136.67	33.89			-9.146	9.915	380	
							Base Shear	1478.02

Table 4: Wind loads from Notebook Submission A
As stated previously, Case 1 (Wind north-south and east-west) will be used to validate the wind loads. The tables below compare wind in the north-south direction and wind in the east-west direction.

		Hand Calculations	RAM	
Level	Height	Fx	Fy	\% error
Roof	136.67	138.63	128.75	7.13
Penthouse	116.85	234.39	220.39	5.97
5th Floor	102.18	195.05	182.71	6.33
4th Floor	87.51	190.04	177.97	6.35
3rd Floor	72.84	184.07	172.61	6.23
2nd Floor	57.17	177.23	166.38	6.12
1st Floor	43.5	232.23	273.85	17.92
Ground	18	126.37	77.2	38.91
	Base Shear	1478.01	1399.86	5.29

Table 5: Wind loads in the north-south direction

Level	Height	Fx	Fx	$\%$ error
Roof	136.67	93.88	56.19	40.147
Penthouse	116.85	158.73	95.9	39.583
5th Floor	102.18	132.09	79.11	40.109
4th Floor	87.51	128.7	76.66	40.435
3rd Floor	72.84	124.65	74.68	40.088
2nd Floor	57.17	120.025	83.62	30.331
1st Floor	43.5	157.23	138.94	11.633
Ground	18	85.58	94.9	10.89
	Base Shear	1000.885	700	30.062

Table 6: Wind loads in the east-west direction

The hand calculations for the wind in the north-south direction are fairly accurate compared to the RAM model. In the east-west direction however, it is off by about $30-40 \%$ at each level. To determine the wind loads for this building, a rectangle was drawn around the buildings largest dimensions, as shown in Appendix A. It makes sense that wind in the north-south direction will be more accurate as the building's actual east-west dimension spans the 380', resulting in more accurate surface area for the north-south wind to apply to the building. However, the dimensions in the north-south direction do not span the whole 245'. This also explains why the hand calculations are larger than the RAM loads, as the wind loads were being applied to a larger surface area than the building's actual dimensions.

8.2.6 Seismic Load Comparisons

		Hand Calculations	RAM	
Level	Height	Fx	Fx	$\%$ error
Roof	136.67	480.92	435	9.6503
Penthouse	116.85	290.52	213	26.742
5th Floor	102.18	176.93	182	2.8825
4th Floor	87.51	147.93	152	3.0149
3rd Floor	72.84	119.68	123	3.1668
2nd Floor	57.17	109.19	130	18.711
1st Floor	43.5	102.39	94.9	7.3445
Ground	18	40.77	8.56	79.004
	Base Shear	1468.33	1338	8.857

Table 7: Seismic Loads

The hand calculation and RAM seismic loads are fairly accurate, thus validating the seismic loads.

8.3 Lateral System Checks

8.3.1 Lateral Spot Checks

As stated previously, Frame 10 will be used for lateral spot checks due to the accuracy between hand calculations and RAM. The controlling load case is $1.2 \mathrm{D}+0.5 \mathrm{~L}+1.0 \mathrm{~W}$.

Lateral Monber Spot Checks

$$
D=2190 \text { PLF, } L=3000 \text { PL }
$$

$$
\text { Trib width }=30^{\circ}
$$

Controllyy Load case: $1.2 D+0.5 L+1.0 \mathrm{~W}$

$$
\begin{aligned}
& \text { Dead }=73 \mathrm{PSF} \\
& \text { Live }=100 \mathrm{PSF} \\
& \text { Wind }=382.16 \mathrm{~K}
\end{aligned}
$$

W $24+68$ Bean Check
From SAP 2000 mover:

$$
\begin{aligned}
& M_{v}=389.4^{1 k} \\
& V_{v}=24.2^{k}
\end{aligned}
$$

From Table 3-2: $\varphi M_{n}=664^{1 k}>389: 4^{1 k} \therefore c k$

$$
\sigma V_{n}=295^{k}>24.2^{k} \therefore o k
$$

W 12×152 Bruce check
From SAp 2000 model:

$$
\begin{aligned}
& P_{v}=262^{k} \\
& M_{v}=78.2^{1 k}
\end{aligned}
$$

unbraced length $=30^{\circ}$

$$
O M_{n}=911^{1 k}>M_{V}=78.2^{1 k}: 0 \mathrm{~K}
$$

W 14×159 Colum check
From SAP 2000 Model:

$$
P u=1060^{\mathrm{k}}
$$

From table 4-1: $\partial P_{n}=1350^{k}>P_{v}=1060^{k}:$:ck
unbraced last: 26^{\prime}

8.3.2 Story Drift

The allowable story drift at each level is $\mathrm{h} / 400$. In RAM, the drift ratio provides a ration of the allowable drift per foot. Therefore, the allowable drift ratio is $\mathrm{h} / 400=1 / 400=0.0025$. Figure 7 below shows the story drift of each load combination at the roof at the corner of the building, where drift is expected to control. Three of the load combinations (W14, W17, and W23) do not pass as the ratios are greater than 0.0025 . The largest ratio is 0.0030 , which is 20% greater than the allowable. One explanation for this could be the frames were not modeled correctly in RAM (i.e. wrong size assigned, did not assign all bracing). Further investigation will be done to determine why drift is not passing.

Story	LdC	Displacement		Story Drift		Drift Ratio	
		X	Y	X	Y	X	Y
		in	in	in	in		
Roof	D	-0.0865	0.0305	-0.0232	0.0052	0.0001	0.0000
	Lp	-0.0982	0.0589	-0.0251	0.0118	0.0001	0.0000
	W13	0.7209	-0.3029	0.0778	-0.0744	0.0003	0.0003
	W14	0.4542	3.2742	0.1334	0.6387	0.0006	0.0027
	W15	0.4055	-0.5286	0.0438	-0.1064	0.0002	0.0004
	W16	0.6759	0.0743	0.0729	-0.0052	0.0003	0.0000
	W17	0.9244	3.8109	0.1665	0.7137	0.0007	0.0030
	W18	-0.2431	1.1003	0.0335	0.2443	0.0001	0.0010
	W19	0.8813	2.2285	0.1584	0.4232	0.0007	0.0018
	W20	0.2001	-2.6828	-0.0417	-0.5348	0.0002	0.0022
	W21	0.1218	0.4288	0.0580	0.1034	0.0002	0.0004
	W22	1.2002	2.9139	0.1796	0.5314	0.0008	0.0022
	W23	-0.3892	-3.2546	-0.0920	-0.6151	0.0004	0.0026
	W24	0.6892	-0.7695	0.0295	-0.1872	0.0001	0.0008
	E5	1.9964	-0.1487	0.3100	-0.0906	0.0013	0.0004
	E6	2.2724	0.5582	0.3530	0.0601	0.0015	0.0003
	E7	0.6456	3.9289	0.1800	0.8842	0.0008	0.0037
	E8	0.0958	2.5109	0.0934	0.5803	0.0004	0.0024

Figure 7: Story Drift

8.3.3 RAM Member Code Check

Figure 8 shows the member code check that RAM offers. The darker the color, the lower the interaction; the lighter the color, the higher the interaction (i.e. <0.4 is blue, <0.6 green, <0.8 yellow). Any member above an interaction of 1.0 is red. Several members in the model do not pass, all of which are braced members in the auditorium. Similar to story drift, further investigation will need to be done to determine why these members are not passing for strength.

Figure 8: RAM member code check

Appendix A- Wind Load Calculation

This diagram shows the orientation of the direction that the wind load was applied. Due to the irregular shape of the building, the buildings largest dimensions were used to yield a more conservative analysis.

Appendix B- Cost Estimate

Composite Framing

Group	Phase	Description	Takeoff Quantity	Material Price	Material Amount	Total Cost/Unit	Total Amount
3000.000		CONCRETE					
	3220.050	Rebar: Wiremesh					
		Wiremesh - Walks 6x6 6/6	630.00 sf	0.09 /sf	58	0.09 /sf	58
	3310.260	Conc: Suspended Slab					
		Susp Slab Conc 3500 psi	6.32 cy	60.06 /cy	391	61.87 lcy	391
5000.000		METALS					
	5090.030	Fastener: Metal Welds					
		Shear Studs At Beams	118.00 ea	7.20 /ea	850	7.20 /ea	850
	5121.010	Structural: W Shapes					
		W Shape W 12×19	63.00 If	1,200.00 /ton	718	11.40 hf	718
		W Shape W 14×22	21.00 If	1,200.00 Aton	277	13.20 /f	277
		W Shape W 21×44	30.00 If	1,200.00 Aton	792	26.40 nf	792
		W Shape W 21×50	30.00 If	1,200.00 Aton	900	30.00 hf	900
	5310.010	Structural: Steel Deck					
		Deck Steel 3" Deep	630.00 sf	1.20 /sf	756	1.20 /sf	756

Non-Composite Framing

Group	Phase	Description	Takeoff Quantity	Material Price	Material Amount	Total Cost/Unit	Total Amount
3000.000		CONCRETE					
	3110.500	Forms: Beams					
		Beam Bottom Form	681.00 sf	0.82 /sf	572	0.84 /sf	572
	3310.260	Conc: Suspended Slab					
		Susp Slab Conc 3500 psi	11.67 cy	60.06 /cy	722	61.86 /cy	722
5000.000		METALS					
	5121.010	Structural: W Shapes					
		W Shape W 14x30	84.00 If	1,200.00 Aton	1,512	18.00 Mf	1,512
-		W Shape W 24×55	60.00 If	1,200.00 Aton	1,980	33.00 /f	1,980

One- Way Slab

Group	Phase	Description	Takeoff Quantity	Material Price	Material Amount	Total Cost/Unit	Total Amount
3000.000		CONCRETE					
	3110.500	Forms: Beams					
		Beam Bottom Form	180.00 sf	0.82 /sf	151	0.84 /sf	151
		Beam Bottom Form	1,752.00 sf	0.82 /sf	1,473	0.84 /sf	1,473
	3210.700	Rebar: Beams					
		Beam Rebar\#3	288.00 If	528.00 ton	30	0.10 /ff	30
		Beam Rebar \#5	630.00 If	528.00 ton	178	0.28 /f	178
		Beam Rebar \#6	630.00 If	528.00 ton	257	0.41 lf	257
		Beam Rebar\#9	120.00 If	528.00 ton	111	0.93 lf	111
	3310.260	Conc: Suspended Slab					
		Susp Slab Conc 3500 psi	21.40 cy	60.06 /cy	1,324	61.86 /cy	1,324
	3310.340	Conc: Beams					
-		Beam Conc 3500 psi	3.75 cy	60.06 /cy	232	61.87 /cy	232

Hollow Core Plank on Wide Flanges

Group	Phase	Description	Takeoff Quantity	Material Price	Material Amount	Total Cost/Unit	Total Amount
3000.000		CONCRETE					
	3110.500	Forms: Beams					
		Beam Bottom Form	681.00 sf	0.82 /sf	572	0.84 /sf	572
	3310.420	Conc: Waffle Slab					
		Waffle Slab Conc 3500 psi	11.67 cy	60.06 /cy	722	61.86 /cy	722
5000.000		METALS					
	5121.010	Structural: W Shapes					
		W Shape W 16×31	63.00 If	1,200.00 fton	1,172	18.60 lf	1,172
,		W Shape W 21×57	60.00 If	1,200.00 Aton	2,052	34.20 /f	2,052

