

The Brendan Iribe Center for **Computer Science and Innovation** College Park, Maryland

> Brendan Barrett Advisor: Dr. Aly Said Structural Option April 10, 2017

- Building Overview
- Design Proposal 11.
- Gravity System
 - Voided Concrete Slab
 - Gravity Columns
- Lateral System IV.
 - Shear Wall Layout
 - Shear Wall Design
- Construction Breadth
- Conclusion VI.

Existing Building

Structural Redesign

Cost and Schedule Analysis

- I. Building Overview
- II. Design Proposal
- III. Gravity System
 - I. Voided Concrete Slab
 - II. Gravity Columns
- IV. Lateral System
 - I. Shear Wall Layout
 - II. Shear Wall Design
- V. Construction Breadth
- VI. Conclusion

Existing Building

Structural Redesign

Cost and Schedule Analysis

- Building Overview
- Design Proposal 11.
- Gravity System **III**.
 - Voided Concrete Slab
 - Gravity Columns
- Lateral System IV.
 - Shear Wall Layout
 - Shear Wall Design
- Construction Breadth
- Conclusion VI.

Existing Building

Structural Redesign

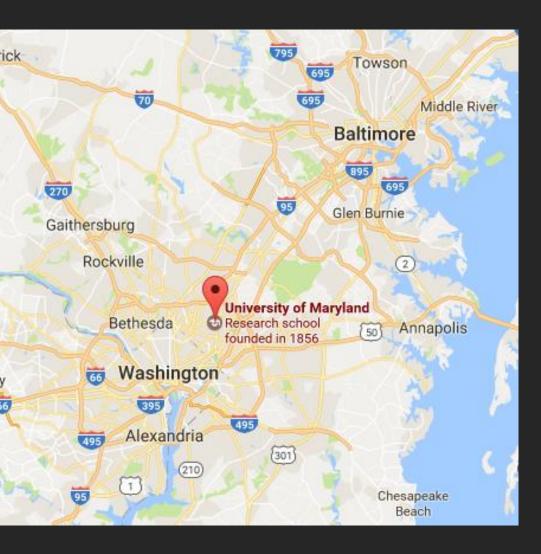
Cost and Schedule Analysis

- I. Building Overview
- II. Design Proposal
- III. Gravity System
 - I. Voided Concrete Slab
 - II. Gravity Columns
- IV. Lateral System
 - I. Shear Wall Layout
 - II. Shear Wall Design
- V. Construction Breadth
- VI. Conclusion

Existing Building

Structural Redesign

Cost and Schedule Analysis


I. Building Overview

- II. Design Proposal
- III. Gravity System
 - I. Voided Concrete Slab
 - II. Gravity Columns

IV. Lateral System

- I. Shear Wall Layout
- II. Shear Wall Design
- V. Construction Breadth
- VI. Conclusion

Site Plan

University of Maryland Department of ...

College Park

mes Clark School of Engineering

Engineering Fields

Paint Branch Stream Valley Park

Chapel Fields

Fraternity Row

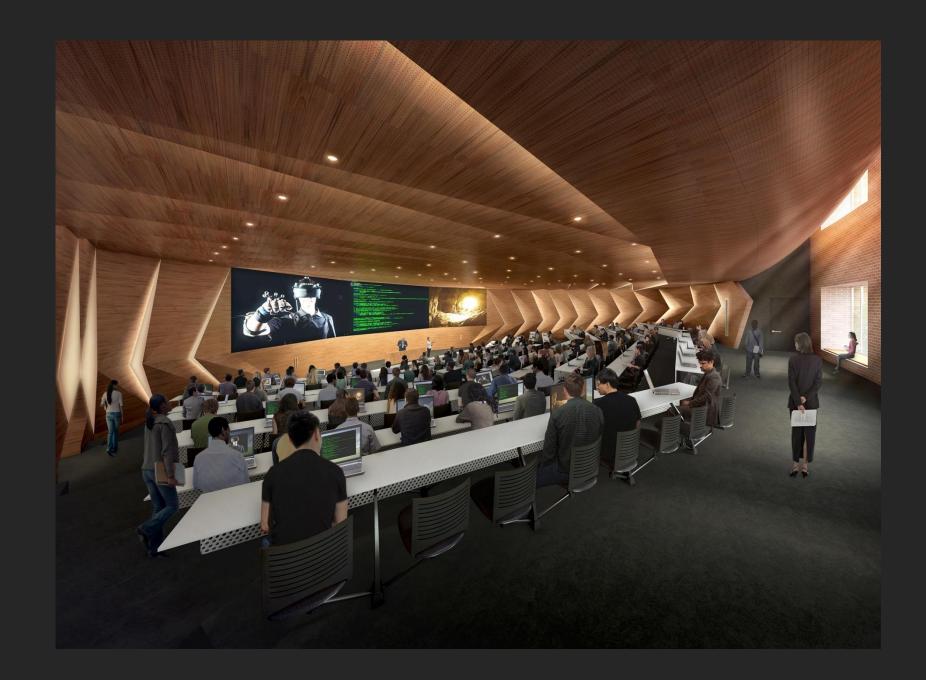
pogle

Building Overview Design Proposal 11. Gravity System **III**. Voided Concrete Slab Gravity Columns Lateral System IV. Shear Wall Layout Shear Wall Design **Construction Breadth** Conclusion VI.

Location Use Size Height Stories Expected Opening Architect General Contractor Structural Engineer

Building Statistics

College Park, MD Higher Education 215,600 sq. ft. 118'-8" 2018 HDR Architecture, Inc. Whiting-Turner Hope Furrer Associates

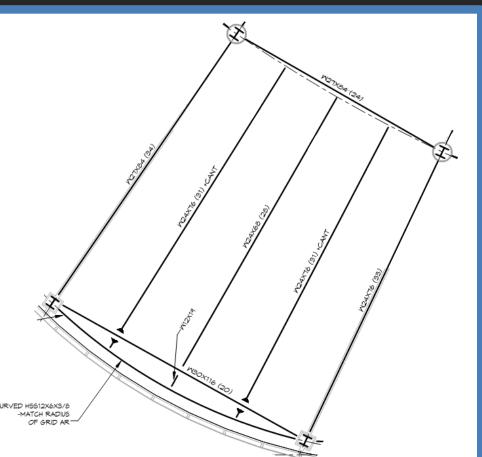


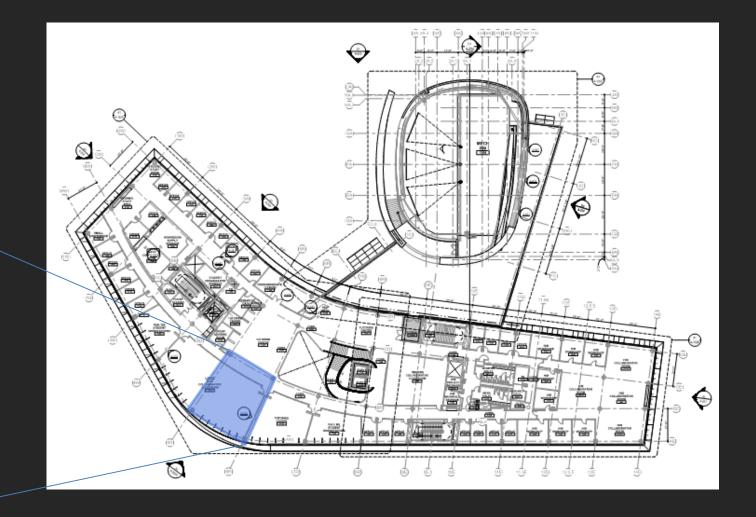
Building Overview Design Proposal 11. Gravity System III. Voided Concrete Slab Gravity Columns Lateral System IV. Shear Wall Layout Shear Wall Design **Construction Breadth** Conclusion VI.

Location Use Size Height Stories Expected Opening Architect General Contractor Structural Engineer

Building Statistics

College Park, MD Higher Education 215,600 sq. ft. 118'-8" 2018 HDR Architecture, Inc. Whiting-Turner Hope Furrer Associates


Building Overview


- Design Proposal 11.
- 111. Gravity System
 - Voided Concrete Slab
 - Gravity Columns

Lateral System IV.

- Shear Wall Layout
- Shear Wall Design
- **Construction Breadth**
- Conclusion VI.

Existing Gravity System

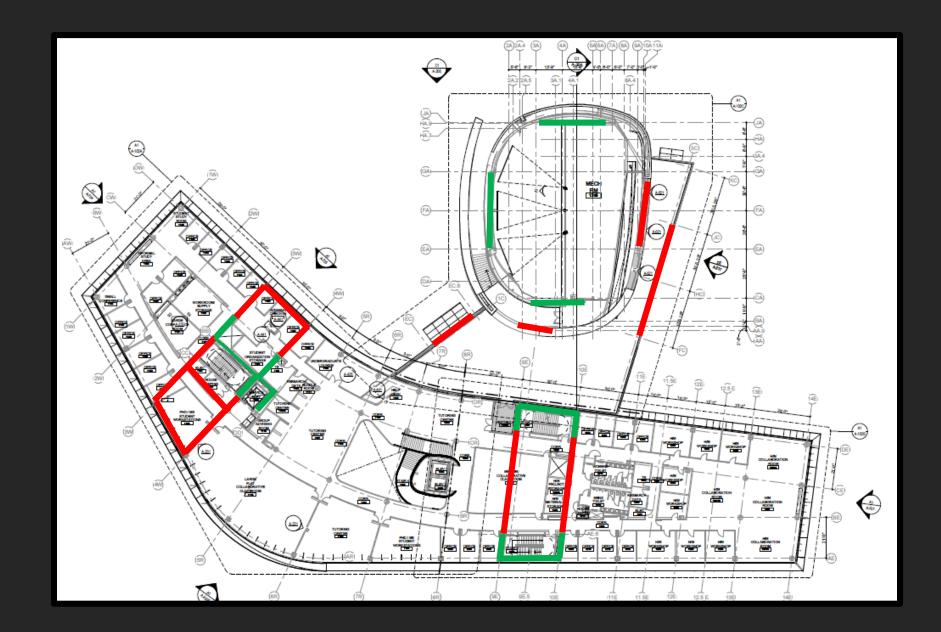
- Composite wide flange girders and columns \bullet
- 3 1/4" LW concrete on 3" 20 gage metal deck

- Ordinary Moment Frames and Ordinary Braced Frames Red-Moment Frames Green- Braced Frames
- Typical beam in moment frames are W24s and W27s
- Typical brace are W10s and W12s

- Gravity Columns 11. Lateral System IV. Shear Wall Layout
 - Shear Wall Design

Building Overview

Voided Concrete Slab


Design Proposal

Gravity System

- **Construction Breadth**
- Conclusion VI.

11.

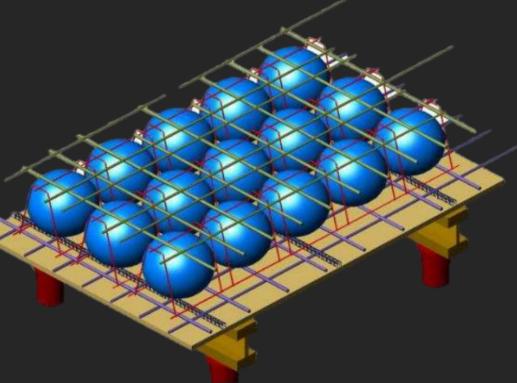
Existing Lateral System

- Building Overview
- **Design Proposal**
- Gravity System **III**.
 - Voided Concrete Slab
 - Gravity Columns ||.
- Lateral System IV.
 - Shear Wall Layout
 - Shear Wall Design Ⅲ.
- **Construction Breadth**
- Conclusion VI.

Problem Statement

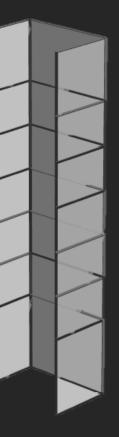
What alternate system could be a feasible design?

Goals


- Reduce cost \bullet
- ullet

Reduce structural depth Maintain open floor plan

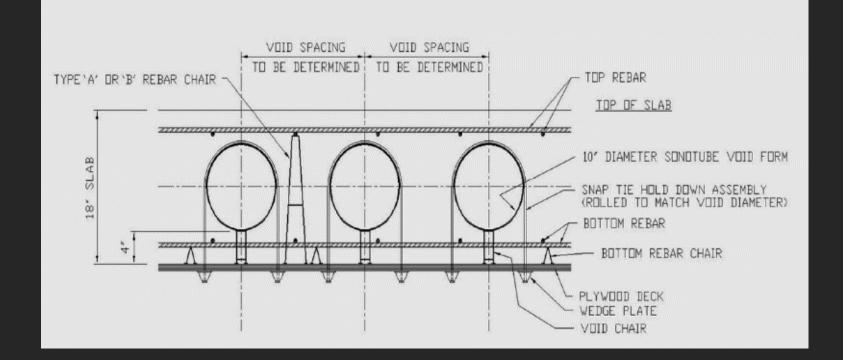
- Building Overview
- **Design Proposal**
- Gravity System
 - Voided Concrete Slab
 - 11. Gravity Columns
- Lateral System IV.
 - Shear Wall Layout
 - Shear Wall Design
- **Construction Breadth** V.
- Conclusion VI.



Gravity System

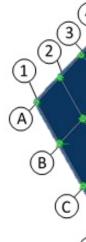
Voided Concrete Slab

Lateral System

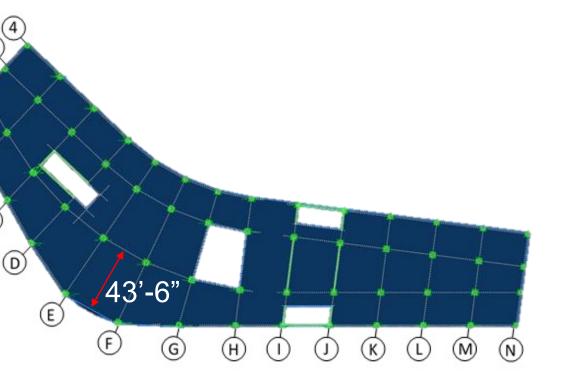


Reinforced Concrete Shear Walls

- Building Overview
- Design Proposal
- Gravity System Ш.
 - Voided Concrete Slab
 - Gravity Columns ΙΙ.
- Lateral System IV.
 - Shear Wall Layout
 - Shear Wall Design
- **Construction Breadth**
- Conclusion VL


- Advantages of a Voided Concrete Slab • Reduces self weight by ~30-35% Reduces structural depth Reach longer spans than flat plate slab

Gravity Redesign- Voided Slab



- Building Overview
- Design Proposal 11.
- **Gravity System**
 - Voided Concrete Slab
 - Gravity Columns
- Lateral System IV.
 - Shear Wall Layout
 - Shear Wall Design
- Construction Breadth
- Conclusion VI.

Gravity Redesign-Voided Slab

$$h_{min} = \frac{l_n}{30} = \frac{(43.5 * l_n)}{100}$$

Exterior panel without edge beam without drop panel

From Table 8.3.1.1, minimum slab thickness: 12) = 16.5"30

- Building Overview
- Design Proposal **II**.
- Gravity System III.
 - Voided Concrete Slab
 - Gravity Columns
- Lateral System IV.
 - Shear Wall Layout
 - Shear Wall Design
- **Construction Breadth**
- Conclusion VI.

Slal
Dea
Stif
She
Cag
Voi
Voi
Spa
Voi
Nur
Con
Voi
Equ

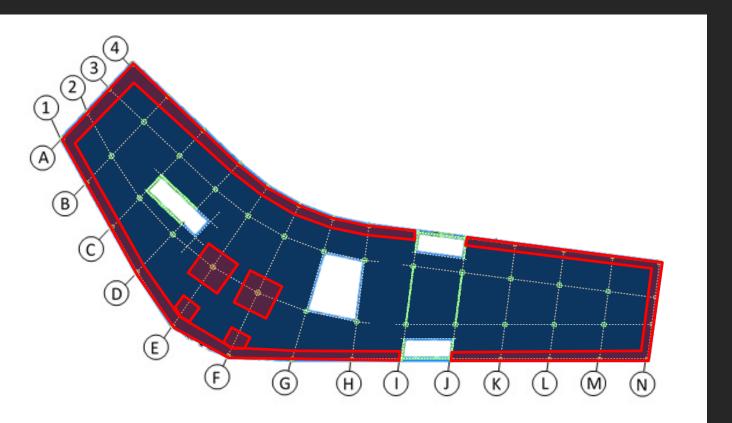
Gravity Redesign- Voided Slab

Cobiax Eco-Line System

b depth (in)	17.5
d load reduction (psf)	-66
fness correction factor	0.91
ar reduction factor	0.55
ge module support height (in)	12 5/8
d former height (in)	12 3/8
d former horizontal dimension (in)	12 3/8
cing between void formers (in)	1 3/8
d formers center line spacing (in)	13 3/4
mber of void formers per sq ft	0.76
crete displacement per sq ft (cubic ft)	0.44
d formers per cage module	7
iivalent area per cage module (sq ft)	9.25

17.5" slab depth

Reduced dead load = 66 psf


New slab weight

$$=rac{17.5*150}{12}-($$

$(.7 * 66) = 172.5 \, psf$

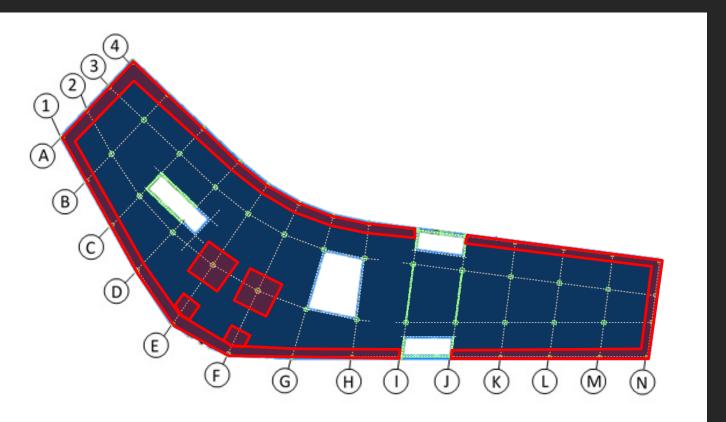
- Building Overview
- Design Proposal 11.
- Gravity System Ш.
 - Voided Concrete Slab
 - Gravity Columns
- Lateral System IV.
 - Shear Wall Layout
 - Shear Wall Design
- **Construction Breadth**
- Conclusion VI.

Gravity Redesign-Voided Slab

1) Perimeter of floor plate

stress

Solid slab = Trib area -


(Shear reduction factor)(Allowable shear) Total factored uniformaly dist.load

Solid slab required in two locations:

2) Around columns where voided slab can't resist total shear

- Building Overview
- Design Proposal 11.
- Gravity System III. –
 - Voided Concrete Slab
 - 11. Gravity Columns
- Lateral System IV.
 - Shear Wall Layout
 - Shear Wall Design
- **Construction Breadth** V.
- Conclusion VI.

Gravity Redesign-Voided Slab

Column E1= 200 ft^2

Column E2= 450 ft^2

Column F1= 166 ft²

Column F2= 450 ft²

- Building Overview
- Design Proposal **II**.
- Gravity System III.
 - Voided Concrete Slab
 - Gravity Columns
- Lateral System IV.
 - Shear Wall Layout
 - Shear Wall Design
- **Construction Breadth**
- Conclusion VI.

Slal
Dea
Stif
She
Cag
Voi
Voi
Spa
Voi
Nur
Con
Voi
Equ

Gravity Redesign- Voided Slab

Cobiax Eco-Line System

b depth (in)	17.5
d load reduction (psf)	-66
fness correction factor	0.91
ar reduction factor	0.55
ge module support height (in)	12 5/8
d former height (in)	12 3/8
d former horizontal dimension (in)	12 3/8
cing between void formers (in)	1 3/8
d formers center line spacing (in)	13 3/4
mber of void formers per sq ft	0.76
crete displacement per sq ft (cubic ft)	0.44
d formers per cage module	7
iivalent area per cage module (sq ft)	9.25

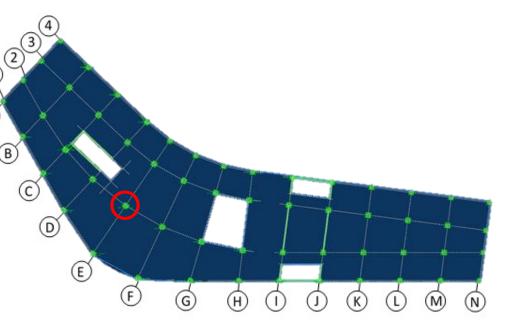
17.5" slab depth

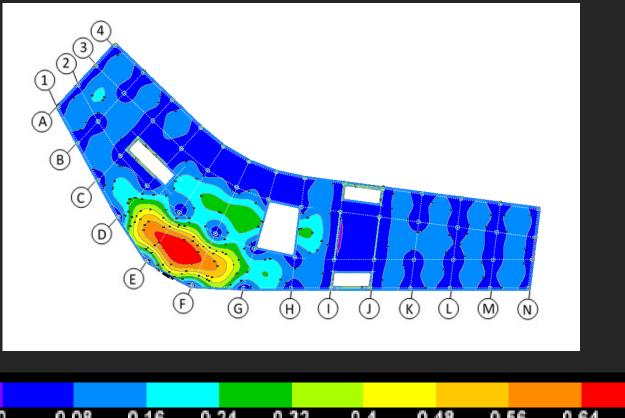
Reduced dead load = 66 psf

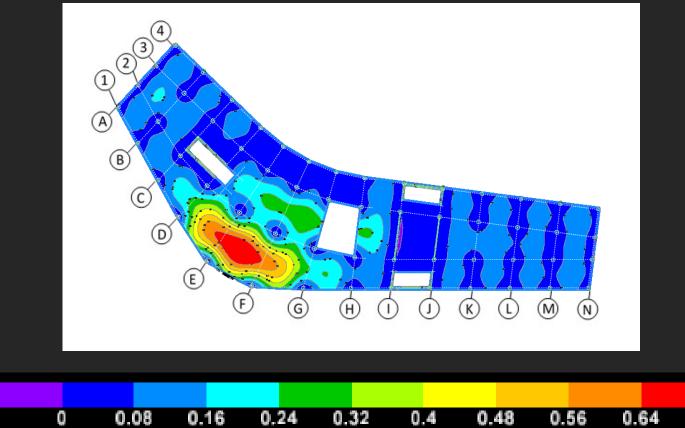
New slab weight

$$=rac{17.5*150}{12}-($$

$(.7 * 66) = 172.5 \, psf$

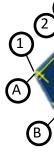

- Building Overview
- Design Proposal 11.
- Gravity System III. –
 - Voided Concrete Slab
 - 11. Gravity Columns
- Lateral System IV.
 - Shear Wall Layout
 - Shear Wall Design
- **Construction Breadth** V.
- Conclusion VI.




Gravity Redesign-Voided Slab

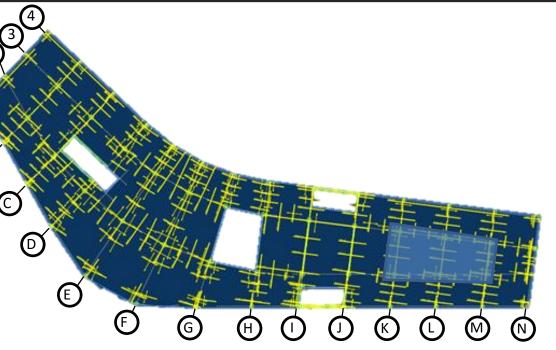
Punching Shear

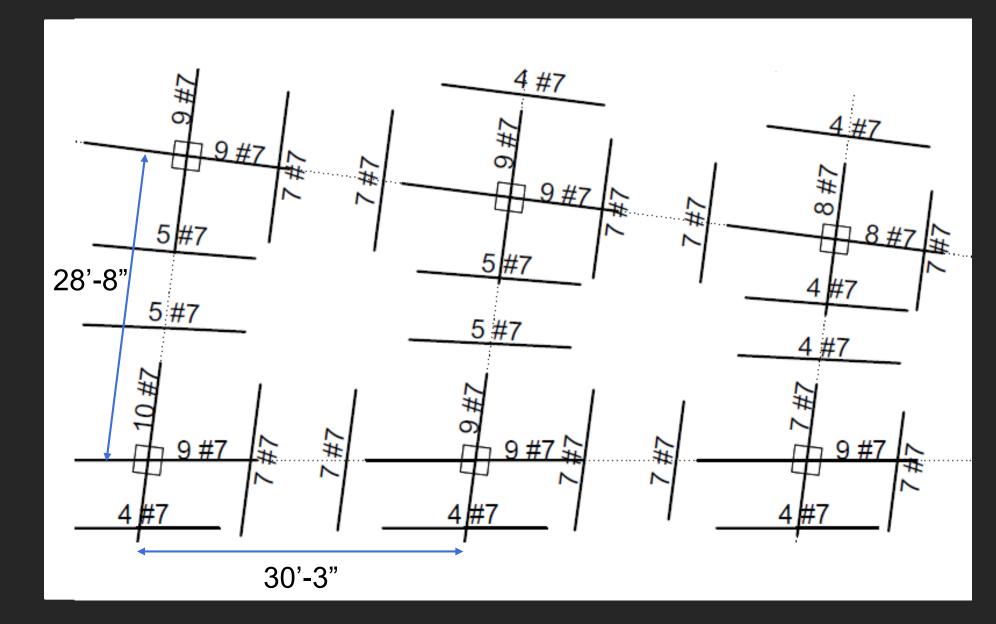
$$V_{c} = 189.7 \text{ psi} > V_{u} = 159.5 \text{ psi} \therefore \text{OK}$$



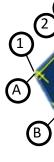
Deflection

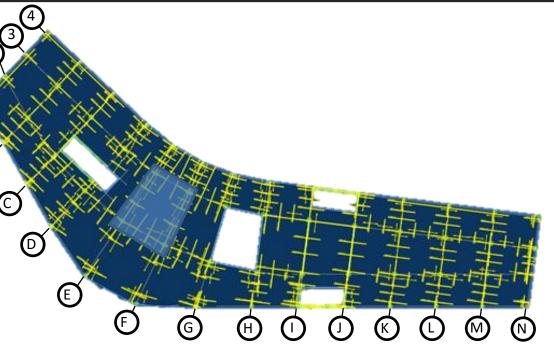
Max = 0.77" < Allowable = L/480 = 1.08" ∴ OK

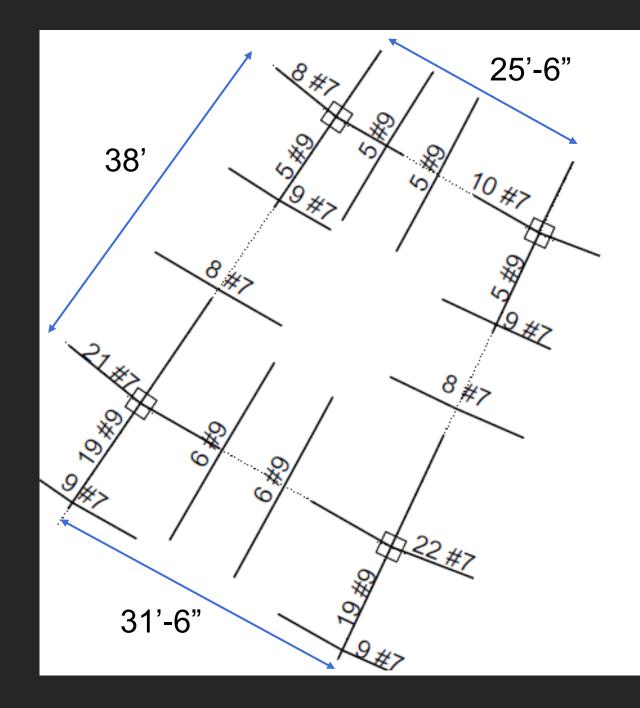

- Building Overview
- Design Proposal 11.
- **Gravity System** III. |
 - Voided Concrete Slab
 - 11. Gravity Columns
- Lateral System IV.
 - Shear Wall Layout
 - Shear Wall Design
- **Construction Breadth**
- Conclusion VI.



Gravity Redesign-Voided Slab

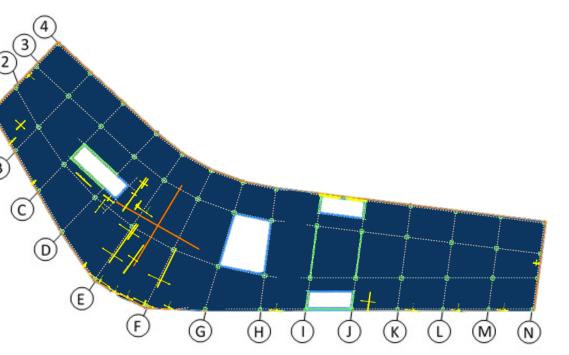

Top Reinforcement


- Building Overview
- Design Proposal 11.
- Gravity System Ш.
 - Voided Concrete Slab
 - Gravity Columns 11.
- Lateral System IV.
 - Shear Wall Layout
 - Shear Wall Design
- **Construction Breadth** V.
- Conclusion VI.



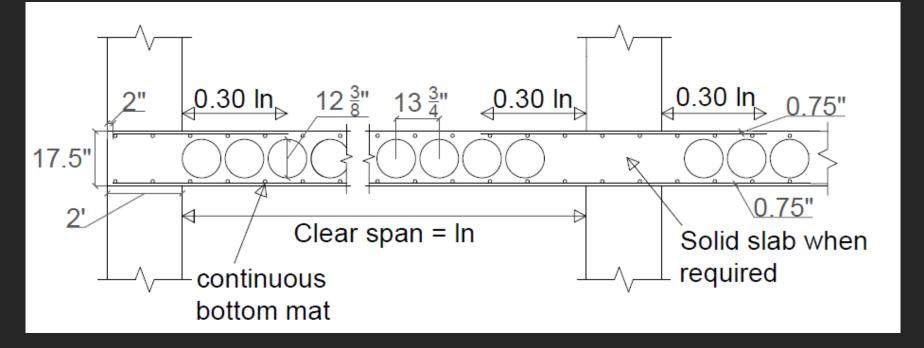
Gravity Redesign- Voided Slab

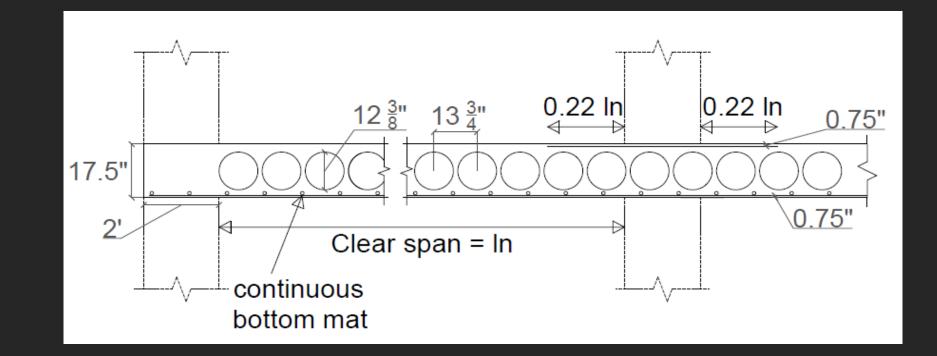
Top Reinforcement



- Building Overview
- Design Proposal
- Gravity System III. |
 - Voided Concrete Slab
 - Gravity Columns
- Lateral System IV.
 - Shear Wall Layout
 - Shear Wall Design
- **Construction Breadth**
- Conclusion VI.

Gravity Redesign-Voided Slab


Bottom Reinforcement


• 15' strip \rightarrow 9 in² • $A_{smin} = 5.31 \text{ in}^2$

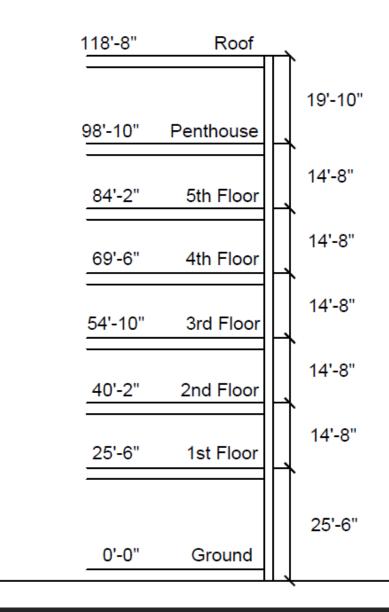
Mat of #7@12" each way

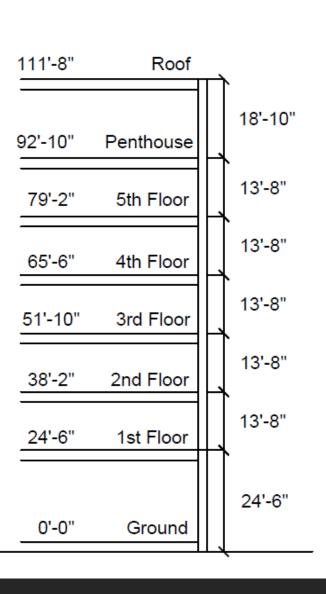
- Building Overview
- Design Proposal Ш./
- Gravity System Ш.
 - Voided Concrete Slab
 - Gravity Columns
- Lateral System IV.
 - Shear Wall Layout
 - Shear Wall Design
- **Construction Breadth**
- Conclusion VI.

Gravity Redesign-Voided Slab

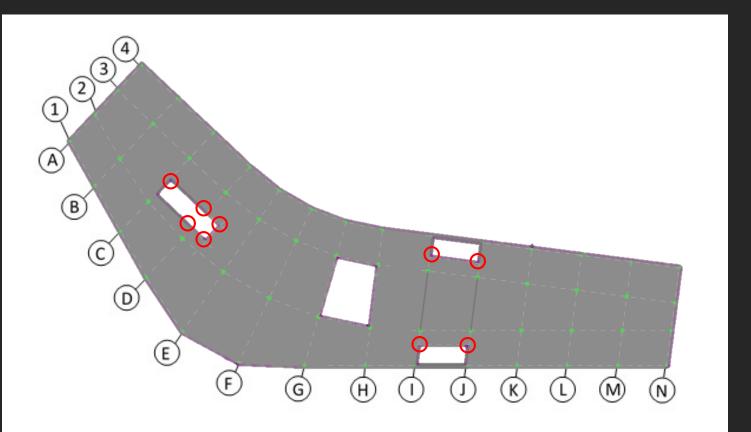
Column Strip

Middle Strip


- Building Overview
- Design Proposal 11.
- Gravity System Ш.
 - Voided Concrete Slab
 - Gravity Columns
- Lateral System IV.
 - Shear Wall Layout
 - Shear Wall Design
- **Construction Breadth**
- Conclusion VI.


ullet

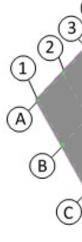
Gravity Redesign- Voided Slab


Height decreases by 7' • ~6% of the building height

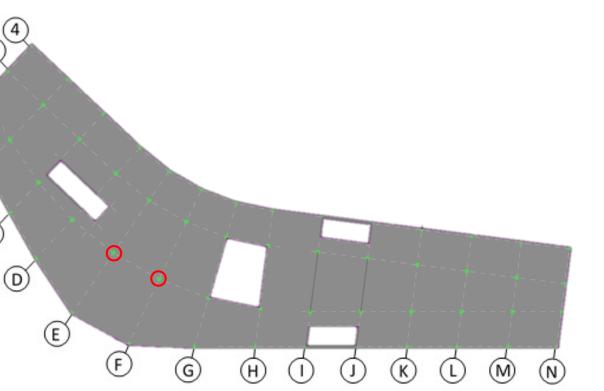
Reduce costs of façade, ductwork, and pipes

- Building Overview
- Design Proposal 11.
- **Gravity System** Ш.
 - Voided Concrete Slab
 - Gravity Columns
- Lateral System IV.
 - Shear Wall Layout
 - Shear Wall Design
- **Construction Breadth**
- Conclusion VI.

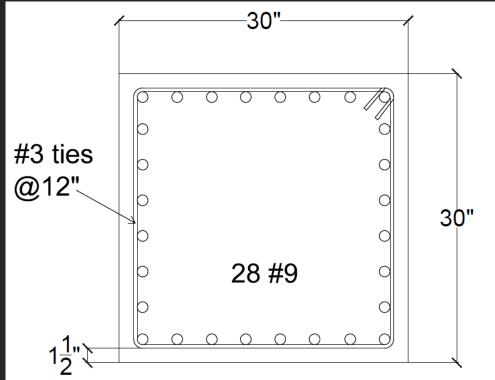
Gravity Redesign- Columns


- ightarrow
- of existing lateral system
- reasonable

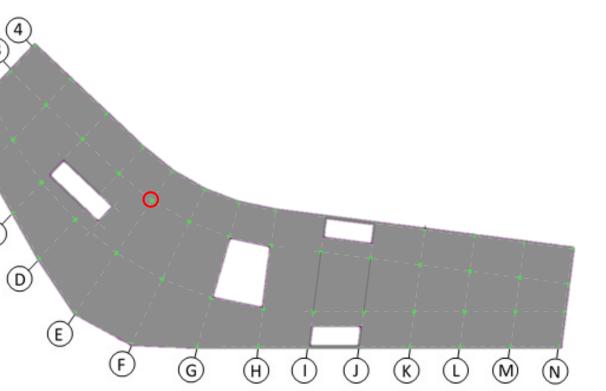
Column locations remain the same

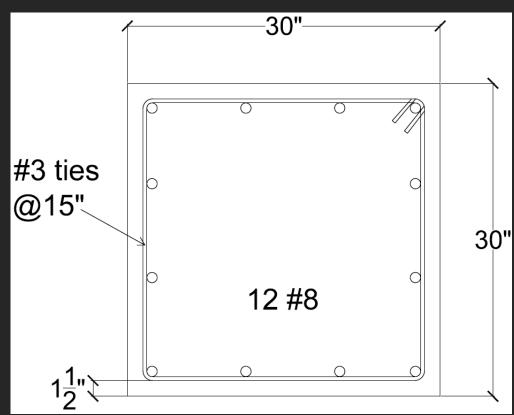

• 9 columns removed that were part

• f'c= 8000 psi to keep column sizes

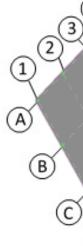

- Building Overview
- Design Proposal 11.
- Gravity System
 - Voided Concrete Slab
 - Gravity Columns
- Lateral System IV.
 - Shear Wall Layout
 - Shear Wall Design
- Construction Breadth
- Conclusion $\mathsf{V}\mathsf{L}$

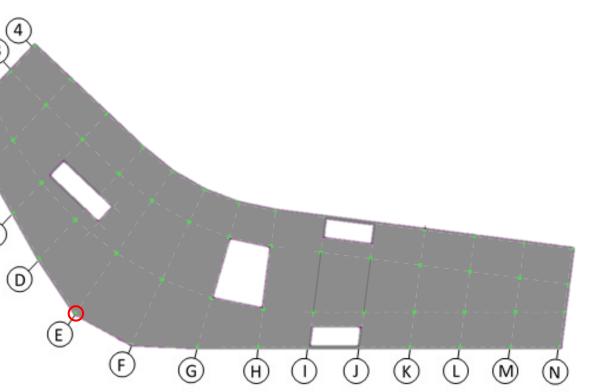
Gravity Redesign- Columns


Columns E2 and F2 P_{.1}= 3900 kips From ACI 22.4.2.2 \rightarrow Trial Size 30x30 Longitudinal Reinforcement 28#9 Transverse Reinforcement #3 ties @12"


- I. Building Overview
- II. Design Proposal
- III. Gravity System
 - I. Voided Concrete Slab
 - II. Gravity Columns
- IV. Lateral System
 - I. Shear Wall Layout
 - II. Shear Wall Design
- V. Construction Breadth
- VI. Conclusion

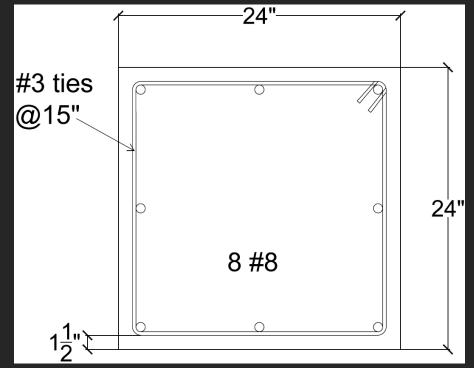
Gravity Redesign- Columns


Inter P_{u} $A_{s} \min = 9 \ln^{2}$ Long. Reinforce Transverse Rein


Interior Column P_u= 2133 kips

Long. Reinforcement 12#8 (9.48 in²) Transverse Reinforcement #3 ties @15"

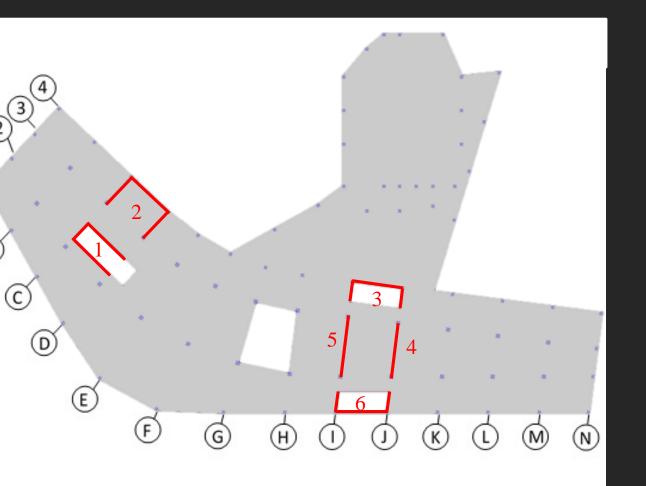
- Building Overview
- Design Proposal 11.
- Gravity System
 - Voided Concrete Slab
 - Gravity Columns
- Lateral System IV.
 - Shear Wall Layout
 - Shear Wall Design
- **Construction Breadth**
- Conclusion VI.



Gravity Redesign- Columns

Exterior Column

 $A_{s} \min = 5.76 \text{ in}^{2}$



P_u= 1751 kips From ACI 22.4.2.2 \rightarrow Trial Size 24x24

Long. Reinforcement 8#8 (6.32 in²) Transverse Reinforcement #3 ties @15"

- Building Overview
- Design Proposal
- Gravity System **III**.
 - Voided Concrete Slab
 - Gravity Columns Ш.
- Lateral System IV.
 - Shear Wall Layout
 - Shear Wall Design
- **Construction Breadth**
- Conclusion VI.

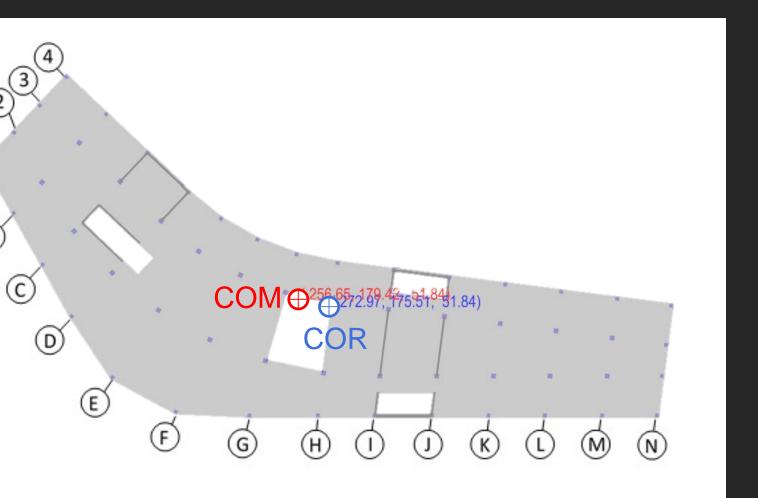
Lateral Redesign- Shear Walls

A

B

- Shear walls remain in the same \bullet locations as moment frames
- Thickness = 12" \bullet

f'c= 4000 psi


• ACI 11.3 \rightarrow 1/25 unsupported height

- Building Overview
- Design Proposal
- Gravity System
 - Voided Concrete Slab
 - Gravity Columns Ш.
- Lateral System IV.
 - Shear Wall Layout
 - Shear Wall Design
- **Construction Breadth**
- Conclusion VI.

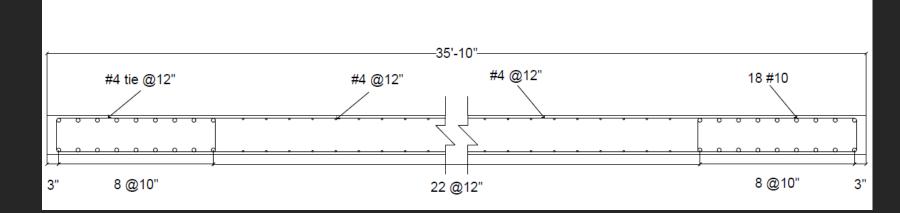
Lateral Redesign- Shear Walls

À

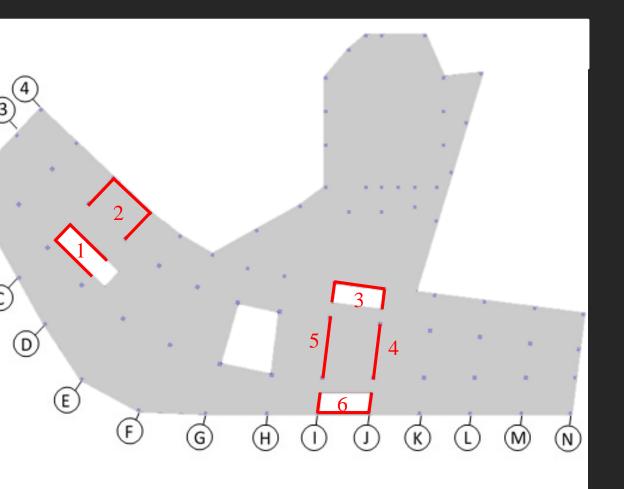
B

- \bullet
- Helps minimize torsional ulletdeformations

COR and COM off 16' in the x direction and 4' in the y direction


- Building Overview
- Design Proposal 11.
- Gravity System
 - Voided Concrete Slab
 - Gravity Columns **II**.
- Lateral System IV.
 - Shear Wall Layout
 - Shear Wall Design
- Construction Breadth
- Conclusion VI.

B


Lateral Redesign- Shear Walls

Shear Wall #5 Design

Controlling Load Combination: 0.9D – 1.4E

Shear Wall	Length	Horizontal RFT	Vertical RFT	Flexural/Axial RFT	
1	Short- 13.17'	#5@12"	#5@12"	0 #7@0"	
Ţ	Long-30'	#5@12	#5@12	8 #7@9"	
2	Short- 21'	#5@12"	#5@12"	8 #10@9"	
Z	Long- 30'	#5@12	#5@12		
3	Short- 12.5'	#5@12"	#5@12"	8 #8@9"	
5	Long- 30'	#5@12	#5@12		
4	32'	#4@12"	#4@12"	14 #10@9"	
5	35.83'	#4@12"	#4@12"	18 #10@10"	
6	Short- 12.67'	#[@12]	#F@12"	10,40,000	
	Long- 30.25'	#5@12"	#5@12"	10 #9@9"	

- Building Overview
- Design Proposal 11.
- Gravity System III.
 - Voided Concrete Slab
 - Gravity Columns
- IV. Lateral System
 - Shear Wall Layout
 - Shear Wall Design
- **Construction Breadth** V.
- Conclusion VI.

Story

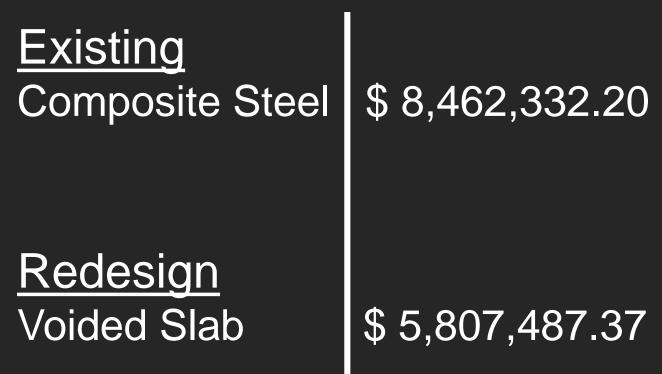
Roo

Lateral Redesign- Shear Walls

 $\Delta_{\text{allowable,wind}} = H/400$

r	LdC	Displa	cement
		x	Y
		in	in
of	W15	0.3678	-0.7119
	W16	0.3193	-0.1761
	W17	0.0078	2.2212
	W18	0.2158	-0.0929
	W19	0.4554	0.6201
	W20	0.2317	-1.5082
	W21	0.4377	-0.6036
	W22	0.2453	1.5338
	W23	0.2700	-2.1998
	W24	0.0776	-0.0624

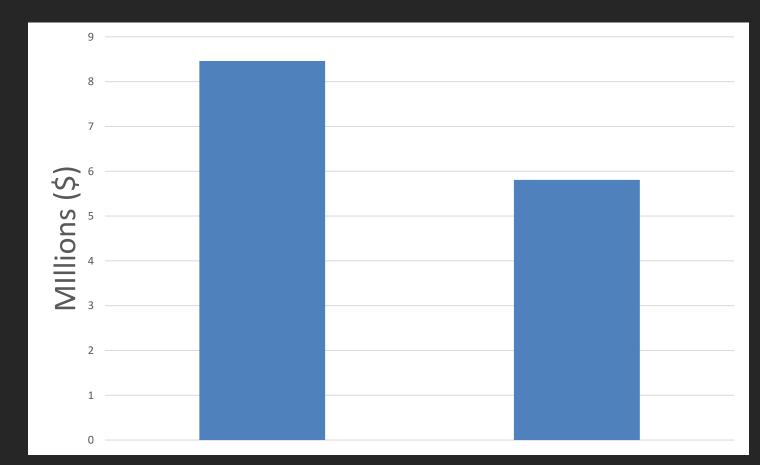
 $\Delta_{allowable,wind} = 3.35 ">2.22":: OK$


Story	LdC
Roof	E5 E6
	E7 E8

$\Delta_{\text{allowable,seismic}} = 0.015h_{\text{sx}}$

Displacement						
Y						
in						
2.2321						
1.0743						
2.6197						
4.9320						

 $\Delta_{allowable,seismic} = 20.1" > 4.93" : OK$


- Building Overview
- Design Proposal 11.
- Gravity System
 - Voided Concrete Slab
 - Gravity Columns
- Lateral System IV.
 - Shear Wall Layout
 - Shear Wall Design
- **Construction Breadth**
- Conclusion VI.

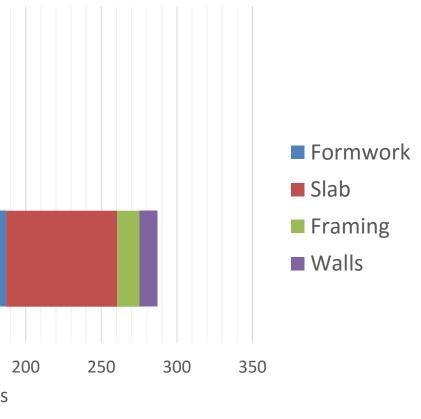
Construction Breadth

* Using RS Means 2017

Existing

Cost Comparison

Redesign



- Building Overview
- Design Proposal /||./
- Gravity System
 - Voided Concrete Slab
 - Gravity Columns Ш./
- Lateral System IV.
 - Shear Wall Layout
 - Shear Wall Design
- **Construction Breadth**
- Conclusion VI.

Construction Breadth

Schedule Comparison

<u>Existing</u> Decking Framing Total	93.5 27.5 121 days	Existing			
<u>Redesign</u> Slab Columns Walls	73.5 15 11.7	Redesign	0 50	100	150 20 Days
Formwork Total	187 287.3 days			1	37 %

crease

- Building Overview
- Design Proposal 11.
- Gravity System
 - Voided Concrete Slab
 - Gravity Columns 11.
- Lateral System IV.
 - Shear Wall Layout
 - Shear Wall Design
- **Construction Breadth**
- Conclusion

Goals Achieved?

Reduce structural depth ✓ Reduce cost ✓ Maintain open floor plan ✓

Drawbacks

Increase in structural weight Increase in foundation Longer construction schedule

- I. Building Overview
- II. Design Proposal
- III. Gravity System
 - I. Voided Concrete Slab
 - II. Gravity Columns
- IV. Lateral System
 - I. Shear Wall Layout
 - II. Shear Wall Design
- V. Construction Breadth
- VI. Conclusion

- Special thanks to:
- The engineers at Hope Furrer
 - Associates
- Dr. Aly Said, Thesis Advisor
- The AE Faculty
- Friends and family

Acknowledgements

- Building Overview
- Design Proposal 11.
- Gravity System
 - Voided Concrete Slab
 - 11. Gravity Columns
- Lateral System IV.
 - Shear Wall Layout
 - Shear Wall Design
- **Construction Breadth** V.
- Conclusion

- I. Building Overview
- II. Design Proposal
- III. Gravity System
- IV. Lateral System
- V. Construction Breadth
- VI. Conclusion

	Dead (psf)	SW Slab (psf)	SW Column (k)	Live (psf)	Snow (psf)	1.4D	1.2D+1.6L+0.5Lr	Total (k)
Roof	73	172.5	17.65	30	24.25	502.45	497.394	502.45
Penthouse	10	172.5	12.8	100	0	373.07	563.02	1065.47
5th	10	172.5	12.8	100	0	373.07	563.02	1628.49
4th	10	172.5	12.8	100	0	373.07	563.02	2191.51
3rd	10	172.5	12.8	100	0	373.07	563.02	2754.53
2nd	10	172.5	12.5	100	0	372.65	562.66	3317.19
1st	10	172.5	30	100	0	397.15	583.66	3900.85

	Dead (psf)	SW Slab (psf)	SW Column (k)	Live (psf)	Snow (psf)	1.4D	1.2D+1.6L+0.5Lr	Total (k)
Roof	73	173.5	11.3	30	24.25	240.14	237.03	240.14
Penthouse	10	173.5	8.2	100	0	178.47	256.97	497.11
5th	10	173.5	8.2	100	0	178.47	256.97	754.08
4th	10	173.5	8.2	100	0	178.47	256.97	1011.05
3rd	10	173.5	8.2	100	0	178.47	256.97	1268.02
2nd	10	173.5	8.2	100	0	178.47	256.97	1524.99
1st	10	173.5	14.7	100	0	187.57	264.77	1789.76

Column E2

Column E1

Solid area around column = Tributary area of column

(Shear reduction factor)(Allowable direct shear force)

Total factored unifromly distributed load

$$\Phi V_c = \Phi 4\lambda \sqrt{f'c} b_0 d = 0.75(4)(1)\sqrt{4000} * 2[(30 + 16.375) * 2] * \left(\frac{16.375}{1000}\right) = 576.3 \ kips$$

Solid area arond column =
$$1286 - \frac{0.55 * 576.3}{\frac{379}{1000}} = 449.6 ft^2$$

	Column size	Tributary Area (ft ²)	b ₀ (ft)	ΦV _c	Vu	Solid Area (ft ²)
	24x24	216	161.5	501.77	79.31	n/a
	30x30	395	185.5	576.34	146.78	n/a
	30x30	374	185.5	576.34	138.82	n/a
	24x24	182	161.5	501.77	66.43	n/a
	24x24	405	161.5	501.77	150.94	n/a
	30x30	763	185.5	576.34	286.25	n/a
	30x30	754	185.5	576.34	282.84	n/a
	24x24	330	161.5	501.77	122.52	n/a
	24x24	501	161.5	501.77	187.33	n/a
	30x30	670	185.5	576.34	251.00	n/a
	30x30	833	185.5	576.34	312.78	n/a
	24x24	338	161.5	501.77	125.55	n/a
	24x24	623	161.5	501.77	233.57	n/a
	30x30	749	185.5	576.34	280.94	n/a
	30x30	769	185.5	576.34	288.52	n/a
	24x24	303	161.5	501.77	112.29	n/a
	24x24	929	161.5	501.77	349.54	200.84
	30x30	1286	185.5	576.34	484.46	449.63
	30x30	757	185.5	576.34	283.97	n/a
-	24x24	270	161.5	501.77	99.78	n/a
	24x24	894	161.5	501.77	336.28	165.84
	30x30	1286	185.5	576.34	484.46	449.63
	30x30	774	185.5	576.34	290.42	n/a
	24x24	272	161.5	501.77	100.54	n/a
	24x24	710	161.5	501.77	266.54	n/a
	30x30	690	185.5	576.34	258.58	n/a
	30x30	542	185.5	576.34	202.49	n/a
	24x24	238	161.5	501.77	87.65	n/a

Column	Column size	Tributary Area (ft ²)	b ₀ (ft)	ΦVc	Vu	Solid Area (ft ²)
H1	24x24	497	161.5	501.77	185.81	n/a
H2	30x30	582	185.5	576.34	217.65	n/a
H3	30x30	602	185.5	576.34	225.23	n/a
H4	24x24	291	161.5	501.77	107.74	n/a
11	24x24	233	161.5	501.77	85.76	n/a
12	30x30	836	185.5	576.34	313.91	n/a
13	30x30	732	185.5	576.34	274.50	n/a
14	24x24	230	161.5	501.77	84.62	n/a
J1	24x24	220	161.5	501.77	80.83	n/a
J2	30x30	815	185.5	576.34	305.96	n/a
J3	30x30	825	185.5	576.34	309.75	n/a
J4	24x24	223	161.5	501.77	81.97	n/a
K1	24x24	445	161.5	501.77	166.10	n/a
K2	30x30	614	185.5	576.34	229.78	n/a
K3	30x30	622	185.5	576.34	232.81	n/a
K4	24x24	307	161.5	501.77	113.80	n/a
L1	24x24	427	161.5	501.77	159.28	n/a
L2	30x30	595	185.5	576.34	222.58	n/a
L3	30x30	706	185.5	576.34	264.64	n/a
L4	24x24	318	161.5	501.77	117.97	n/a
M1	24x24	433	161.5	501.77	161.56	n/a
M2	30x30	571	185.5	576.34	213.48	n/a
M3	30x30	559	185.5	576.34	208.93	n/a
M4	24x24	393	161.5	501.77	146.40	n/a
N1	24x24	231	161.5	501.77	85.00	n/a
N2	30x30	292	185.5	576.34	107.74	n/a
N3	30x30	315	185.5	576.34	116.46	n/a
N4	24x24	176	161.5	501.77	64.15	n/a

Kennore	
Longitude Dir	ec
End span	С
	N
Interior span	С
	N
Latitude Direc	ti
Interior span	С
	N
* denotes A _s r ** mat consite	

Reinforcement Summary

tion					
		Mu	As	Ram Reinforcing	OK?
	Exterior negative	-595	8.29	14#9 = 14.0	OK
olumn Strip	Positive	709.4	9.79	mat** + 6#7 = 15.0	OK
	Interior negative	-1212.9	17.3	19#9 =19.0	OK
	Exterior negative	0	0	-	
iddle Strip	Positive	480.6	7.25*	mat** + 1#7 = 12.0	OK
	Interior negative	-389	7.25*	12#9 =12.0	OK
olumn Strip	Positive	480.6	7.25*	mat** + 1#7 = 12.0	OK
Junin Surp	Negative	-1121.4	15.8	24#9 = 24.0	OK
iddle Strip	Positive	320.4	7.25*	mat** = 11.4	OK
idule strip	Negative	-366.2	7.25*	22#9 =22.0	OK
on					
		Mu	A _s	Ram Reinforcing	OK?
luna Chrin	Positive	485.3	7.18*	mat** = 11.4	OK
olumn Strip	Negative	-1132.4	16.1	31#7 = 18.6	OK
	Positive	323.6	7.18*	mat** = 11.4	OK
liddle Strip	Negative	-369.8	7.18*	17#6 = 10.2	OK
n is used					
f #7@12" ea	ch way				

Table 10: Wind in north-south direction comparison

		Calculated	RAM	
Level	Height (ft)	Fy (kips)	Fy (kips)	% error
1st Floor	24.5	189.26	193.82	2.35
2nd Floor	38.17	145.28	148.92	2.44
3rd Floor	51.8	152.44	156.53	2.61
4th Floor	65.6	158.17	162.71	2.79
5th Floor	79.17	163.9	167.99	2.43
Penthouse	92.83	200.04	205.85	2.82
Roof	111.68	119.56	121.55	1.64
	Base Shear	1128.65	1157.37	2.48

		Calculated	RAM	
Level	Height (ft)	Fx (kips)	Fx (kips)	% error
1st Floor	24.5	124.39	105.32	18.11
2nd Floor	38.17	95.48	72.98	30.83
3rd Floor	51.8	75.85	66.41	14.21
4th Floor	65.6	78.71	68.88	14.27
5th Floor	79.17	81.56	71.57	13.96
Penthouse	92.83	99.54	88.21	12.84
Roof	111.68	59.5	52.57	13.18
	Base Shear	615.03	525.94	16.94

Table 11: Wind in east-west direction comparison

		Calculated	RAM	
Level	Height (ft)	Fx (kips)	Fx (kips)	% error
1st Floor	24.5	108.6	114.57	5.21
2nd Floor	38.17	178.28	188.93	5.64
3rd Floor	51.8	173.25	190.59	9.10
4th Floor	65.6	227.04	246.17	7.77
5th Floor	79.17	282.6	302.86	6.69
Penthouse	92.83	343.62	373.14	7.91
Roof	111.68	548.08	574.59	4.61
	Base Shear	1861.47	1990.85	6.50

Table 12: Seismic story shear comparison